mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge branch 'monalisa' of github.com:GTBarkley/comm_alg into monalisa
This commit is contained in:
commit
b5044e60a6
4 changed files with 79 additions and 50 deletions
|
@ -15,6 +15,9 @@ import Mathlib.RingTheory.Localization.AtPrime
|
|||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
import Mathlib.Algebra.Ring.Pi
|
||||
import Mathlib.RingTheory.Finiteness
|
||||
import Mathlib.Util.PiNotation
|
||||
|
||||
open PiNotation
|
||||
|
||||
|
||||
namespace Ideal
|
||||
|
@ -26,6 +29,8 @@ noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J <
|
|||
noncomputable def krullDim (R : Type) [CommRing R] :
|
||||
WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||||
|
||||
--variable {R}
|
||||
|
||||
-- Stacks Lemma 10.26.1 (Should already exists)
|
||||
-- (1) The closure of a prime P is V(P)
|
||||
-- (2) the irreducible closed subsets are V(P) for P prime
|
||||
|
@ -33,7 +38,7 @@ noncomputable def krullDim (R : Type) [CommRing R] :
|
|||
|
||||
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
||||
-- if every element is nilpotent
|
||||
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
||||
class IsLocallyNilpotent {R : Type _} [CommRing R] (I : Ideal R) : Prop :=
|
||||
h : ∀ x ∈ I, IsNilpotent x
|
||||
#check Ideal.IsLocallyNilpotent
|
||||
end Ideal
|
||||
|
@ -89,6 +94,10 @@ lemma containment_radical_power_containment :
|
|||
-- Ideal.exists_pow_le_of_le_radical_of_fG
|
||||
|
||||
|
||||
-- Stacks Lemma 10.52.5: R → S is a ring map. M is an S-mod.
|
||||
-- Then length_R M ≥ length_S M.
|
||||
-- Stacks Lemma 10.52.5': equality holds if R → S is surjective.
|
||||
|
||||
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
|
||||
-- the same as the dimension as a vector space over R/I,
|
||||
lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
|
||||
|
@ -96,48 +105,53 @@ lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
|
|||
→ Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
||||
|
||||
-- Does lean know that M/IM is a R/I module?
|
||||
-- Use 10.52.5
|
||||
|
||||
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
|
||||
-- M is a finite R-mod and I^nM=0. Then length of M is finite.
|
||||
lemma power_zero_finite_length : Ideal.FG I → Ideal.IsMaximal I → Module.Finite R M
|
||||
→ (∃ n : ℕ, (I ^ n) • (⊤ : Submodule R M) = 0)
|
||||
→ (∃ m : ℕ, Module.length R M ≤ m) := by
|
||||
intro IisFG IisMaximal MisFinite power
|
||||
rcases power with ⟨n, npower⟩
|
||||
lemma power_zero_finite_length [Ideal.IsMaximal I] (h₁ : Ideal.FG I) [Module.Finite R M]
|
||||
(h₂ : (∃ n : ℕ, (I ^ n) • (⊤ : Submodule R M) = 0)) :
|
||||
(∃ m : ℕ, Module.length R M ≤ m) := by sorry
|
||||
-- intro IisFG IisMaximal MisFinite power
|
||||
-- rcases power with ⟨n, npower⟩
|
||||
-- how do I get a generating set?
|
||||
|
||||
|
||||
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||||
lemma IsArtinian_iff_finite_max_ideal :
|
||||
IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
||||
lemma Artinian_has_finite_max_ideal
|
||||
[IsArtinianRing R] : Finite (MaximalSpectrum R) := by
|
||||
by_contra infinite
|
||||
simp only [not_finite_iff_infinite] at infinite
|
||||
|
||||
|
||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||
lemma Jacobson_of_Artinian_is_nilpotent :
|
||||
IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
||||
lemma Jacobson_of_Artinian_is_nilpotent
|
||||
[IsArtinianRing R] : IsNilpotent (Ideal.jacobson (⊥ : Ideal R)) := by
|
||||
have J := Ideal.jacobson (⊥ : Ideal R)
|
||||
|
||||
|
||||
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||||
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||||
-- its maximal ideals. Also, all primes are maximal
|
||||
abbrev Prod_of_localization :=
|
||||
Π I : MaximalSpectrum R, Localization.AtPrime I.1
|
||||
|
||||
-- lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
||||
-- ∧
|
||||
-- instance : CommRing (Prod_of_localization R) := by
|
||||
-- unfold Prod_of_localization
|
||||
-- infer_instance
|
||||
|
||||
def jaydensRing : Type _ := sorry
|
||||
-- ∀ I : MaximalSpectrum R, Localization.AtPrime R I
|
||||
def foo : Prod_of_localization R →+* R where
|
||||
toFun := sorry
|
||||
invFun := sorry
|
||||
left_inv := sorry
|
||||
right_inv := sorry
|
||||
map_mul' := sorry
|
||||
map_add' := sorry
|
||||
|
||||
instance : CommRing jaydensRing := sorry -- this should come for free, don't even need to state it
|
||||
|
||||
def foo : jaydensRing ≃+* R where
|
||||
toFun := _
|
||||
invFun := _
|
||||
left_inv := _
|
||||
right_inv := _
|
||||
map_mul' := _
|
||||
map_add' := _
|
||||
-- Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) →
|
||||
-- Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
||||
-- := by sorry
|
||||
-- Haven't finished this.
|
||||
def product_of_localization_at_maximal_ideal [Finite (MaximalSpectrum R)]
|
||||
(h : Ideal.IsLocallyNilpotent (Ideal.jacobson (⊥ : Ideal R))) :
|
||||
Prod_of_localization R ≃+* R := by sorry
|
||||
|
||||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||
lemma IsArtinian_iff_finite_length :
|
||||
|
@ -148,8 +162,8 @@ lemma finite_length_is_Noetherian :
|
|||
(∃ n : ℕ, Module.length R R ≤ n) → IsNoetherianRing R := by sorry
|
||||
|
||||
-- Lemma: if R is Artinian then all the prime ideals are maximal
|
||||
lemma primes_of_Artinian_are_maximal :
|
||||
IsArtinianRing R → Ideal.IsPrime I → Ideal.IsMaximal I := by sorry
|
||||
lemma primes_of_Artinian_are_maximal
|
||||
[IsArtinianRing R] [Ideal.IsPrime I] : Ideal.IsMaximal I := by sorry
|
||||
|
||||
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||||
|
||||
|
|
|
@ -63,7 +63,7 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
|
|||
apply height_le_of_le
|
||||
apply le_maximalIdeal
|
||||
exact I.2.1
|
||||
. simp
|
||||
. simp only [height_le_krullDim]
|
||||
|
||||
#check height_le_krullDim
|
||||
--some propositions that would be nice to be able to eventually
|
||||
|
@ -135,7 +135,7 @@ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
|||
unfold krullDim
|
||||
simp [field_prime_height_zero]
|
||||
|
||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||
by_contra x
|
||||
rw [Ring.not_isField_iff_exists_prime] at x
|
||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||
|
@ -156,9 +156,9 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
|
|||
aesop
|
||||
contradiction
|
||||
|
||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||
lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||
constructor
|
||||
· exact isField.dim_zero
|
||||
· exact domain_dim_zero.isField
|
||||
· intro fieldD
|
||||
let h : Field D := IsField.toField fieldD
|
||||
exact dim_field_eq_zero
|
||||
|
@ -226,7 +226,11 @@ lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
|||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||
krullDim R + 1 = krullDim (Polynomial R) := sorry
|
||||
|
||||
lemma dim_mvPolynomial [Field K] (n : ℕ) : krullDim (MvPolynomial (Fin n) K) = n := sorry
|
||||
|
||||
lemma height_eq_dim_localization :
|
||||
height I = krullDim (Localization.AtPrime I.asIdeal) := sorry
|
||||
|
||||
lemma dim_quotient_le_dim : height I + krullDim (R ⧸ I.asIdeal) ≤ krullDim R := sorry
|
||||
|
||||
lemma height_add_dim_quotient_le_dim : height I + krullDim (R ⧸ I.asIdeal) ≤ krullDim R := sorry
|
|
@ -6,7 +6,9 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|||
import Mathlib.RingTheory.DedekindDomain.DVR
|
||||
|
||||
|
||||
lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry
|
||||
lemma FieldisArtinian (R : Type _) [CommRing R] (h: IsField R) :
|
||||
IsArtinianRing R := by sorry
|
||||
|
||||
|
||||
|
||||
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
|
||||
|
@ -47,8 +49,7 @@ lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R]
|
|||
lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R)
|
||||
(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P :=
|
||||
by
|
||||
-- if R is Artinian and P is prime then R/P is Integral Domain
|
||||
-- which is Artinian Domain
|
||||
-- if R is Artinian and P is prime then R/P is Artinian Domain
|
||||
-- R⧸P is a field by the above lemma
|
||||
-- P is maximal
|
||||
|
||||
|
@ -56,13 +57,13 @@ by
|
|||
have artRP : IsArtinianRing (R⧸P) := by
|
||||
exact isArtinianRing_of_quotient_of_artinian R P IsArt
|
||||
|
||||
have artRPField : IsField (R⧸P) := by
|
||||
exact ArtinianDomainIsField (R⧸P) artRP
|
||||
|
||||
have h := Ideal.Quotient.maximal_of_isField P artRPField
|
||||
exact h
|
||||
|
||||
-- Then R/I is Artinian
|
||||
-- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (R⧸I) := by
|
||||
|
||||
-- R⧸I.IsArtinian → monotone_stabilizes_iff_artinian.R⧸I
|
||||
|
||||
|
||||
|
||||
|
||||
-- Use Stacks project proof since it's broken into lemmas
|
||||
|
|
|
@ -22,11 +22,7 @@ noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.c
|
|||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||||
|
||||
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
|
||||
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
|
||||
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
|
||||
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
|
||||
-- simp
|
||||
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
|
||||
|
||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||
krullDim R + 1 = krullDim (Polynomial R) := by
|
||||
|
@ -37,16 +33,30 @@ lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
|||
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||||
intro P
|
||||
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
|
||||
have : ∃ M, Ideal.IsMaximal M ∧ P.asIdeal ≤ M := by
|
||||
apply exists_le_maximal
|
||||
apply IsPrime.ne_top
|
||||
apply P.IsPrime
|
||||
obtain ⟨M, maxM, PleM⟩ := this
|
||||
let P' : PrimeSpectrum (Polynomial R) := PrimeSpectrum.mk M (IsMaximal.isPrime maxM)
|
||||
have PleP' : P ≤ P' := PleM
|
||||
have : height P ≤ height P' := height_le_of_le PleP'
|
||||
simp only [WithBot.coe_le_coe]
|
||||
have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by
|
||||
|
||||
sorry
|
||||
obtain ⟨I, h⟩ := this
|
||||
use I
|
||||
exact ge_trans h this
|
||||
obtain ⟨I, IP⟩ := this
|
||||
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
|
||||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||
apply ge_trans this IP
|
||||
exact ge_trans this IP
|
||||
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
||||
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
||||
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
|
||||
apply iSup_le
|
||||
apply this
|
||||
simp
|
||||
simp only [iSup_le_iff]
|
||||
intro P
|
||||
exact ge_trans oneOut (htPBdd P)
|
||||
|
|
Loading…
Reference in a new issue