mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
commit
aac88adc02
4 changed files with 157 additions and 85 deletions
|
@ -16,6 +16,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|||
import Mathlib.Algebra.Ring.Pi
|
||||
import Mathlib.RingTheory.Finiteness
|
||||
import Mathlib.Util.PiNotation
|
||||
import Mathlib.RingTheory.Ideal.MinimalPrime
|
||||
import CommAlg.krull
|
||||
|
||||
open PiNotation
|
||||
|
@ -43,6 +44,8 @@ class IsLocallyNilpotent {R : Type _} [CommRing R] (I : Ideal R) : Prop :=
|
|||
#check Ideal.IsLocallyNilpotent
|
||||
end Ideal
|
||||
|
||||
def RingJacobson (R) [Ring R] := Ideal.jacobson (⊥ : Ideal R)
|
||||
|
||||
-- Repeats the definition of the length of a module by Monalisa
|
||||
variable (R : Type _) [CommRing R] (I J : Ideal R)
|
||||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||
|
@ -169,15 +172,15 @@ abbrev Prod_of_localization :=
|
|||
def foo : Prod_of_localization R →+* R where
|
||||
toFun := sorry
|
||||
-- invFun := sorry
|
||||
left_inv := sorry
|
||||
right_inv := sorry
|
||||
--left_inv := sorry
|
||||
--right_inv := sorry
|
||||
map_mul' := sorry
|
||||
map_add' := sorry
|
||||
|
||||
|
||||
def product_of_localization_at_maximal_ideal [Finite (MaximalSpectrum R)]
|
||||
(h : Ideal.IsLocallyNilpotent (Ideal.jacobson (⊥ : Ideal R))) :
|
||||
Prod_of_localization R ≃+* R := by sorry
|
||||
(h : Ideal.IsLocallyNilpotent (RingJacobson R)) :
|
||||
R ≃+* Prod_of_localization R := by sorry
|
||||
|
||||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||
lemma IsArtinian_iff_finite_length :
|
||||
|
@ -193,18 +196,61 @@ lemma primes_of_Artinian_are_maximal
|
|||
|
||||
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||||
|
||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||
lemma dim_le_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 ↔ IsArtinianRing R := by
|
||||
constructor
|
||||
rintro ⟨RisNoetherian, dimzero⟩
|
||||
rw [ring_Noetherian_iff_spec_Noetherian] at RisNoetherian
|
||||
let Z := irreducibleComponents (PrimeSpectrum R)
|
||||
have Zfinite : Set.Finite Z := by
|
||||
-- apply TopologicalSpace.NoetherianSpace.finite_irreducibleComponents ?_
|
||||
-- Lemma: X is an irreducible component of Spec(R) ↔ X = V(I) for I a minimal prime
|
||||
lemma irred_comp_minmimal_prime (X) :
|
||||
X ∈ irreducibleComponents (PrimeSpectrum R)
|
||||
↔ ∃ (P : minimalPrimes R), X = PrimeSpectrum.zeroLocus P := by
|
||||
sorry
|
||||
|
||||
-- Lemma: localization of Noetherian ring is Noetherian
|
||||
-- lemma localization_of_Noetherian_at_prime [IsNoetherianRing R]
|
||||
-- (atprime: Ideal.IsPrime I) :
|
||||
-- IsNoetherianRing (Localization.AtPrime I) := by sorry
|
||||
|
||||
|
||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||
lemma Artinian_if_dim_le_zero_Noetherian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 → IsArtinianRing R := by
|
||||
rintro ⟨RisNoetherian, dimzero⟩
|
||||
rw [ring_Noetherian_iff_spec_Noetherian] at RisNoetherian
|
||||
have := fun X => (irred_comp_minmimal_prime R X).mp
|
||||
choose F hf using this
|
||||
let Z := irreducibleComponents (PrimeSpectrum R)
|
||||
-- have Zfinite : Set.Finite Z := by
|
||||
-- apply TopologicalSpace.NoetherianSpace.finite_irreducibleComponents ?_
|
||||
-- sorry
|
||||
--let P := fun
|
||||
rw [← ring_Noetherian_iff_spec_Noetherian] at RisNoetherian
|
||||
have PrimeIsMaximal : ∀ X : Z, Ideal.IsMaximal (F X X.2).1 := by
|
||||
intro X
|
||||
have prime : Ideal.IsPrime (F X X.2).1 := (F X X.2).2.1.1
|
||||
rw [Ideal.dim_le_zero_iff] at dimzero
|
||||
exact dimzero ⟨_, prime⟩
|
||||
have JacLocallyNil : Ideal.IsLocallyNilpotent (RingJacobson R) := by sorry
|
||||
let Loc := fun X : Z ↦ Localization.AtPrime (F X.1 X.2).1
|
||||
have LocNoetherian : ∀ X, IsNoetherianRing (Loc X) := by
|
||||
intro X
|
||||
sorry
|
||||
-- apply IsLocalization.isNoetherianRing (F X.1 X.2).1 (Loc X) RisNoetherian
|
||||
have Locdimzero : ∀ X, Ideal.krullDim (Loc X) ≤ 0 := by sorry
|
||||
have powerannihilates : ∀ X, ∃ n : ℕ,
|
||||
((F X.1 X.2).1) ^ n • (⊤: Submodule R (Loc X)) = 0 := by sorry
|
||||
have LocFinitelength : ∀ X, ∃ n : ℕ, Module.length R (Loc X) ≤ n := by
|
||||
intro X
|
||||
have idealfg : Ideal.FG (F X.1 X.2).1 := by
|
||||
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
||||
specialize RisNoetherian (F X.1 X.2).1
|
||||
exact RisNoetherian
|
||||
have modulefg : Module.Finite R (Loc X) := by sorry -- not sure if this is true
|
||||
specialize PrimeIsMaximal X
|
||||
specialize powerannihilates X
|
||||
apply power_zero_finite_length R (F X.1 X.2).1 (Loc X) idealfg powerannihilates
|
||||
have RingFinitelength : ∃ n : ℕ, Module.length R R ≤ n := by sorry
|
||||
rw [IsArtinian_iff_finite_length]
|
||||
exact RingFinitelength
|
||||
|
||||
lemma dim_le_zero_Noetherian_if_Artinian (R : Type _) [CommRing R] :
|
||||
IsArtinianRing R → IsNoetherianRing R ∧ Ideal.krullDim R ≤ 0 := by
|
||||
intro RisArtinian
|
||||
constructor
|
||||
apply finite_length_is_Noetherian
|
||||
|
@ -213,7 +259,6 @@ lemma dim_le_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
|||
intro I
|
||||
apply primes_of_Artinian_are_maximal
|
||||
|
||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -49,10 +49,12 @@ lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤
|
|||
show J' < J
|
||||
exact lt_of_lt_of_le hJ' I_le_J
|
||||
|
||||
lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||
@[simp]
|
||||
lemma krullDim_le_iff {R : Type _} [CommRing R] {n : ℕ} :
|
||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||
|
||||
lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||
@[simp]
|
||||
lemma krullDim_le_iff' {R : Type _} [CommRing R] {n : ℕ∞} :
|
||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||
|
||||
@[simp]
|
||||
|
@ -61,11 +63,10 @@ lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
|||
|
||||
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
||||
@[simp]
|
||||
lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
|
||||
lemma height_zero_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = 0 ↔ P = ⊥ := by
|
||||
constructor
|
||||
· intro h
|
||||
unfold height at h
|
||||
rw [bot_eq_zero] at h
|
||||
simp only [Set.chainHeight_eq_zero_iff] at h
|
||||
apply eq_bot_of_minimal
|
||||
intro I
|
||||
|
@ -85,13 +86,10 @@ lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectru
|
|||
have := not_lt_of_lt JneP
|
||||
contradiction
|
||||
|
||||
@[simp]
|
||||
lemma height_bot_eq {D: Type _} [CommRing D] [IsDomain D] : height (⊥ : PrimeSpectrum D) = ⊥ := by
|
||||
rw [height_bot_iff_bot]
|
||||
|
||||
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
||||
ideal of height ≥ n. -/
|
||||
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||
@[simp]
|
||||
lemma le_krullDim_iff {R : Type _} [CommRing R] {n : ℕ} :
|
||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
|
||||
constructor
|
||||
· unfold krullDim
|
||||
|
@ -131,9 +129,19 @@ lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
|||
|
||||
#check ENat.recTopCoe
|
||||
|
||||
/- terrible place for this lemma. Also this probably exists somewhere
|
||||
/- terrible place for these two lemmas. Also this probably exists somewhere
|
||||
Also this is a terrible proof
|
||||
-/
|
||||
lemma eq_top_iff' (n : ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by
|
||||
refine' ⟨fun a b => _, fun h => _⟩
|
||||
. rw [a]; exact le_top
|
||||
. induction' n using ENat.recTopCoe with n
|
||||
. rfl
|
||||
. exfalso
|
||||
apply not_lt_of_ge (h (n + 1))
|
||||
norm_cast
|
||||
norm_num
|
||||
|
||||
lemma eq_top_iff (n : WithBot ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by
|
||||
aesop
|
||||
induction' n using WithBot.recBotCoe with n
|
||||
|
@ -151,47 +159,30 @@ lemma eq_top_iff (n : WithBot ℕ∞) : n = ⊤ ↔ ∀ m : ℕ, m ≤ n := by
|
|||
|
||||
lemma krullDim_eq_top_iff (R : Type _) [CommRing R] :
|
||||
krullDim R = ⊤ ↔ ∀ (n : ℕ), ∃ I : PrimeSpectrum R, n ≤ height I := by
|
||||
simp [eq_top_iff, le_krullDim_iff]
|
||||
simp_rw [eq_top_iff, le_krullDim_iff]
|
||||
change (∀ (m : ℕ), ∃ I, ((m : ℕ∞) : WithBot ℕ∞) ≤ height I) ↔ _
|
||||
simp [WithBot.coe_le_coe]
|
||||
|
||||
|
||||
/-- The Krull dimension of a local ring is the height of its maximal ideal. -/
|
||||
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
||||
apply le_antisymm
|
||||
. rw [krullDim_le_iff']
|
||||
intro I
|
||||
apply WithBot.coe_mono
|
||||
apply height_le_of_le
|
||||
apply le_maximalIdeal
|
||||
exact I.2.1
|
||||
exact WithBot.coe_mono <| height_le_of_le <| le_maximalIdeal I.2.1
|
||||
. simp only [height_le_krullDim]
|
||||
|
||||
/-- The height of a prime `𝔭` is greater than `n` if and only if there is a chain of primes less than `𝔭`
|
||||
with length `n + 1`. -/
|
||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
n < height 𝔭 ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
match n with
|
||||
| ⊤ =>
|
||||
constructor <;> intro h <;> exfalso
|
||||
. exact (not_le.mpr h) le_top
|
||||
. tauto
|
||||
| (n : ℕ) =>
|
||||
have (m : ℕ∞) : n < m ↔ (n + 1 : ℕ∞) ≤ m := by
|
||||
symm
|
||||
show (n + 1 ≤ m ↔ _ )
|
||||
apply ENat.add_one_le_iff
|
||||
exact ENat.coe_ne_top _
|
||||
rw [this]
|
||||
unfold Ideal.height
|
||||
induction' n using ENat.recTopCoe with n
|
||||
. simp
|
||||
. rw [←(ENat.add_one_le_iff <| ENat.coe_ne_top _)]
|
||||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||||
rw [Ideal.height, Set.le_chainHeight_iff]
|
||||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||
constructor <;> rintro ⟨c, hc⟩ <;> use c
|
||||
. tauto
|
||||
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
||||
norm_cast at hc
|
||||
tauto
|
||||
norm_cast
|
||||
simp_rw [and_assoc]
|
||||
|
||||
/-- Form of `lt_height_iff''` for rewriting with the height coerced to `WithBot ℕ∞`. -/
|
||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
|
@ -203,30 +194,24 @@ lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
|||
--some propositions that would be nice to be able to eventually
|
||||
|
||||
/-- The prime spectrum of the zero ring is empty. -/
|
||||
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||||
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||
lemma primeSpectrum_empty_of_subsingleton [Subsingleton R] : IsEmpty <| PrimeSpectrum R where
|
||||
false x := x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||
|
||||
/-- A CommRing has empty prime spectrum if and only if it is the zero ring. -/
|
||||
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||
constructor
|
||||
. contrapose
|
||||
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
||||
constructor <;> contrapose
|
||||
. rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
||||
apply PrimeSpectrum.instNonemptyPrimeSpectrum
|
||||
. intro h
|
||||
by_contra hneg
|
||||
rw [not_isEmpty_iff] at hneg
|
||||
rcases hneg with ⟨a, ha⟩
|
||||
exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩
|
||||
. intro hneg h
|
||||
exact hneg primeSpectrum_empty_of_subsingleton
|
||||
|
||||
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
|
||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||
unfold Ideal.krullDim
|
||||
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
||||
rw [Ideal.krullDim, ←primeSpectrum_empty_iff, iSup_eq_bot]
|
||||
constructor <;> intro h
|
||||
. rw [←not_nonempty_iff]
|
||||
rintro ⟨a, ha⟩
|
||||
specialize h ⟨a, ha⟩
|
||||
tauto
|
||||
cases h ⟨a, ha⟩
|
||||
. rw [h.forall_iff]
|
||||
trivial
|
||||
|
||||
|
@ -246,7 +231,7 @@ lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h :
|
|||
/-- Krull dimension is ≤ 0 if and only if all primes are maximal. -/
|
||||
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||
show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _
|
||||
rw [krullDim_le_iff R 0]
|
||||
rw [krullDim_le_iff]
|
||||
constructor <;> intro h I
|
||||
. contrapose! h
|
||||
have ⟨𝔪, h𝔪⟩ := I.asIdeal.exists_le_maximal (IsPrime.ne_top I.IsPrime)
|
||||
|
@ -294,26 +279,23 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum
|
|||
/-- In a field, the unique prime ideal is the zero ideal. -/
|
||||
@[simp]
|
||||
lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P = ⊥ := by
|
||||
constructor
|
||||
· intro primeP
|
||||
obtain T := eq_bot_or_top P
|
||||
have : ¬P = ⊤ := IsPrime.ne_top primeP
|
||||
tauto
|
||||
· intro botP
|
||||
rw [botP]
|
||||
refine' ⟨fun primeP => Or.elim (eq_bot_or_top P) _ _, fun botP => _⟩
|
||||
· intro P_top; exact P_top
|
||||
. intro P_bot; exact False.elim (primeP.ne_top P_bot)
|
||||
· rw [botP]
|
||||
exact bot_prime
|
||||
|
||||
/-- In a field, all primes have height 0. -/
|
||||
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by
|
||||
lemma field_prime_height_zero {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||
have : IsPrime P.asIdeal := P.IsPrime
|
||||
rw [field_prime_bot] at this
|
||||
have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
||||
rwa [height_bot_iff_bot]
|
||||
rwa [height_zero_iff_bot]
|
||||
|
||||
/-- The Krull dimension of a field is 0. -/
|
||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||
unfold krullDim
|
||||
simp only [field_prime_height_bot, ciSup_unique]
|
||||
simp only [field_prime_height_zero, ciSup_unique]
|
||||
|
||||
/-- A domain with Krull dimension 0 is a field. -/
|
||||
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||
|
@ -353,7 +335,7 @@ lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
|||
applies only to dimension zero rings and domains of dimension 1. -/
|
||||
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
||||
show _ → ((_ : WithBot ℕ∞) ≤ (1 : ℕ))
|
||||
rw [krullDim_le_iff R 1]
|
||||
rw [krullDim_le_iff]
|
||||
intro H p
|
||||
apply le_of_not_gt
|
||||
intro h
|
||||
|
@ -374,12 +356,67 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
|||
rw [dim_le_one_iff]
|
||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||
|
||||
private lemma singleton_chainHeight_le_one {α : Type _} {x : α} [Preorder α] : Set.chainHeight {x} ≤ 1 := by
|
||||
unfold Set.chainHeight
|
||||
simp only [iSup_le_iff, Nat.cast_le_one]
|
||||
intro L h
|
||||
unfold Set.subchain at h
|
||||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h
|
||||
rcases L with (_ | ⟨a,L⟩)
|
||||
. simp only [List.length_nil, zero_le]
|
||||
rcases L with (_ | ⟨b,L⟩)
|
||||
. simp only [List.length_singleton, le_refl]
|
||||
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
|
||||
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
|
||||
exact absurd h1 (lt_irrefl _)
|
||||
|
||||
/-- The ring of polynomials over a field has dimension one. -/
|
||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
rw [le_antisymm_iff]
|
||||
let X := @Polynomial.X K _
|
||||
constructor
|
||||
· exact dim_le_one_of_pid
|
||||
· unfold krullDim
|
||||
apply @iSup_le (WithBot ℕ∞) _ _ _ _
|
||||
intro I
|
||||
have PIR : IsPrincipalIdealRing (Polynomial K) := by infer_instance
|
||||
by_cases I = ⊥
|
||||
· rw [← height_zero_iff_bot] at h
|
||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||
rw [h]
|
||||
exact bot_le
|
||||
· push_neg at h
|
||||
have : I.asIdeal ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
|
||||
contradiction
|
||||
have maxI := IsPrime.to_maximal_ideal this
|
||||
have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
|
||||
intro P
|
||||
constructor
|
||||
· intro H
|
||||
simp only [Set.mem_setOf_eq] at H
|
||||
by_contra x
|
||||
push_neg at x
|
||||
have : P.asIdeal ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : P = ⊥ := PrimeSpectrum.ext P ⊥ a
|
||||
contradiction
|
||||
have maxP := IsPrime.to_maximal_ideal this
|
||||
have IneTop := IsMaximal.ne_top maxI
|
||||
have : P ≤ I := le_of_lt H
|
||||
rw [←PrimeSpectrum.asIdeal_le_asIdeal] at this
|
||||
have : P.asIdeal = I.asIdeal := Ideal.IsMaximal.eq_of_le maxP IneTop this
|
||||
have : P = I := PrimeSpectrum.ext P I this
|
||||
replace H : P ≠ I := ne_of_lt H
|
||||
contradiction
|
||||
· intro pBot
|
||||
simp only [Set.mem_setOf_eq, pBot]
|
||||
exact lt_of_le_of_ne bot_le h.symm
|
||||
replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn
|
||||
unfold height
|
||||
rw [sngletn]
|
||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||
exact singleton_chainHeight_le_one
|
||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||
· obtain ⟨I, h⟩ := this
|
||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||
|
|
|
@ -1,13 +1,3 @@
|
|||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.RingTheory.FiniteType
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.Polynomial.Quotient
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
import CommAlg.krull
|
||||
|
||||
section ChainLemma
|
||||
|
@ -132,7 +122,6 @@ lemma ht_adjoin_x_eq_ht_add_one [Nontrivial R] (I : PrimeSpectrum R) : height I
|
|||
apply hl.2
|
||||
exact hb
|
||||
|
||||
#check (⊤ : ℕ∞)
|
||||
/-
|
||||
dim R + 1 ≤ dim R[X]
|
||||
-/
|
||||
|
|
|
@ -22,7 +22,8 @@ private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] :
|
|||
exact absurd h1 (lt_irrefl _)
|
||||
|
||||
/-- The ring of polynomials over a field has dimension one. -/
|
||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
-- It's the exact same lemma as in krull.lean, added ' to avoid conflict
|
||||
lemma polynomial_over_field_dim_one' {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
rw [le_antisymm_iff]
|
||||
let X := @Polynomial.X K _
|
||||
constructor
|
||||
|
|
Loading…
Reference in a new issue