mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge pull request #74 from ssavkar1/main
Implemented FieldisArtinian lemma
This commit is contained in:
commit
a75dadccd1
1 changed files with 14 additions and 4 deletions
|
@ -6,10 +6,20 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
import Mathlib.RingTheory.DedekindDomain.DVR
|
import Mathlib.RingTheory.DedekindDomain.DVR
|
||||||
|
|
||||||
|
|
||||||
lemma FieldisArtinian (R : Type _) [CommRing R] (h: IsField R) :
|
lemma FieldisArtinian (R : Type _) [CommRing R] (h : IsField R) :
|
||||||
IsArtinianRing R := by sorry
|
IsArtinianRing R := by
|
||||||
|
let inst := h.toField
|
||||||
|
rw [isArtinianRing_iff, isArtinian_iff_wellFounded]
|
||||||
|
apply WellFounded.intro
|
||||||
|
intro I
|
||||||
|
constructor
|
||||||
|
intro J hJI
|
||||||
|
constructor
|
||||||
|
intro K hKJ
|
||||||
|
exfalso
|
||||||
|
rcases Ideal.eq_bot_or_top J with rfl | rfl
|
||||||
|
. exact not_lt_bot hKJ
|
||||||
|
. exact not_top_lt hJI
|
||||||
|
|
||||||
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
|
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
|
||||||
(IsArt : IsArtinianRing R) : IsField (R) := by
|
(IsArt : IsArtinianRing R) : IsField (R) := by
|
||||||
|
|
Loading…
Reference in a new issue