merge two files

This commit is contained in:
chelseaandmadrid 2023-06-15 20:28:30 -07:00
parent 5da3b52dde
commit a3c376de01

View file

@ -167,14 +167,21 @@ lemma PolyType_0 (f : ) : (PolyType f 0) ↔ (∃ (c : ), ∃ (N :
have H2 : (c : ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero]; exact (hh 0).2 have H2 : (c : ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero]; exact (hh 0).2
exact ⟨Polynomial.C (c : ), N, fun n Nn => by rw [(hh n).1 Nn]; exact (((Poly_constant (Polynomial.C (c : )) (c : )).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩ exact ⟨Polynomial.C (c : ), N, fun n Nn => by rw [(hh n).1 Nn]; exact (((Poly_constant (Polynomial.C (c : )) (c : )).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩
-- Δ of 0 times preserves the function -- Δ of 0 times preserves the function
lemma Δ_0 (f : ) : (Δ f 0) = f := by tauto lemma Δ_0 (f : ) : (Δ f 0) = f := by tauto
-- Δ of 1 times decreaes the polynomial type by one -- Δ of 1 times decreaes the polynomial type by one
lemma Δ_1 (f : ) (d : ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by lemma Δ_1 (f : ) (d : ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by
sorry sorry
lemma foo (f : ) (s : ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by lemma foo (f : ) (s : ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
sorry sorry