Merge pull request #32 from GTBarkley/jayden

Jayden
This commit is contained in:
Jidong Wang 2023-06-12 20:50:29 -07:00 committed by GitHub
commit a15c96e7b3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -4,15 +4,16 @@ import Mathlib.RingTheory.Noetherian
import Mathlib.Order.KrullDimension
import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Nilpotent
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
import Mathlib.Data.Finite.Defs
import Mathlib.Order.Height
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Algebra.Ring.Pi
import Mathlib.Topology.NoetherianSpace
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
namespace Ideal
@ -26,21 +27,9 @@ noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I :
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by sorry
variable {R : Type _} [CommRing R]
-- Repeats the definition by Monalisa
noncomputable def length : krullDim (Submodule _ _)
-- The following is Stacks Lemma 10.60.5
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ krull_dim R = 0 ↔ IsArtinianRing R := by
sorry
#check IsNoetherianRing
#check krullDim
@ -48,7 +37,8 @@ lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
-- Repeats the definition of the length of a module by Monalisa
variable (M : Type _) [AddCommMonoid M] [Module R M]
noncomputable def length := krullDim (Submodule R M)
-- change the definition of length
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < }
#check length
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
@ -58,9 +48,42 @@ lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : , length R
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
lemma Jacobson_of_Artinian_is_nilpotent : Is
lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson ( : Ideal R)) := by sorry
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
-- if every element is nilpotent
namespace Ideal
class IsLocallyNilpotent (I : Ideal R) : Prop :=
h : ∀ x ∈ I, IsNilpotent x
end Ideal
#check Ideal.IsLocallyNilpotent
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
-- its maximal ideals. Also, all primes are maximal
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson ( : Ideal R)) → Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
:= by sorry
-- Haven't finished this.
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by sorry
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
-- Every closed subset of a noetherian space is a finite union
-- of irreducible closed subsets.
-- Stacks Lemma 10.26.1 (Should already exists)
-- (1) The closure of a prime P is V(P)
-- (2) the irreducible closed subsets are V(P) for P prime
-- (3) the irreducible components are V(P) for P minimal prime
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals. If J ⊂ √I, then J ^ n ⊂ I for some n
-- how to use namespace
@ -70,8 +93,6 @@ end something
open something
-- The following is Stacks Lemma 10.53.6
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : , length R R ≤ n := by sorry