Merge pull request #32 from GTBarkley/jayden

Jayden
This commit is contained in:
Jidong Wang 2023-06-12 20:50:29 -07:00 committed by GitHub
commit a15c96e7b3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -4,15 +4,16 @@ import Mathlib.RingTheory.Noetherian
import Mathlib.Order.KrullDimension import Mathlib.Order.KrullDimension
import Mathlib.RingTheory.Artinian import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Nilpotent
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
import Mathlib.Data.Finite.Defs import Mathlib.Data.Finite.Defs
import Mathlib.Order.Height import Mathlib.Order.Height
import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Localization.AtPrime import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Algebra.Ring.Pi
import Mathlib.Topology.NoetherianSpace
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary -- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
namespace Ideal namespace Ideal
@ -26,21 +27,9 @@ noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I :
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0 -- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] : lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by sorry
variable {R : Type _} [CommRing R]
-- Repeats the definition by Monalisa
noncomputable def length : krullDim (Submodule _ _)
-- The following is Stacks Lemma 10.60.5
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ krull_dim R = 0 ↔ IsArtinianRing R := by
sorry
#check IsNoetherianRing #check IsNoetherianRing
#check krullDim #check krullDim
@ -48,7 +37,8 @@ lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
-- Repeats the definition of the length of a module by Monalisa -- Repeats the definition of the length of a module by Monalisa
variable (M : Type _) [AddCommMonoid M] [Module R M] variable (M : Type _) [AddCommMonoid M] [Module R M]
noncomputable def length := krullDim (Submodule R M) -- change the definition of length
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < }
#check length #check length
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod -- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
@ -58,9 +48,42 @@ lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : , length R
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent -- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
lemma Jacobson_of_Artinian_is_nilpotent : Is lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson ( : Ideal R)) := by sorry
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
-- if every element is nilpotent
namespace Ideal
class IsLocallyNilpotent (I : Ideal R) : Prop :=
h : ∀ x ∈ I, IsNilpotent x
end Ideal
#check Ideal.IsLocallyNilpotent
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
-- its maximal ideals. Also, all primes are maximal
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson ( : Ideal R)) → Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
:= by sorry
-- Haven't finished this.
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by sorry
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
-- Every closed subset of a noetherian space is a finite union
-- of irreducible closed subsets.
-- Stacks Lemma 10.26.1 (Should already exists)
-- (1) The closure of a prime P is V(P)
-- (2) the irreducible closed subsets are V(P) for P prime
-- (3) the irreducible components are V(P) for P minimal prime
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals. If J ⊂ √I, then J ^ n ⊂ I for some n
-- how to use namespace -- how to use namespace
@ -70,8 +93,6 @@ end something
open something open something
-- The following is Stacks Lemma 10.53.6
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : , length R R ≤ n := by sorry