mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
change : Improved singleton_chainHeight_le_one to singleton_chainHeight_one
This commit is contained in:
parent
3b9a47ac6f
commit
9f0ed8cee3
1 changed files with 22 additions and 14 deletions
|
@ -356,7 +356,9 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
||||||
rw [dim_le_one_iff]
|
rw [dim_le_one_iff]
|
||||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||||
|
|
||||||
private lemma singleton_chainHeight_le_one {α : Type _} {x : α} [Preorder α] : Set.chainHeight {x} ≤ 1 := by
|
/-- Singleton sets have chainHeight 1 -/
|
||||||
|
lemma singleton_chainHeight_one {α : Type _} {x : α} [Preorder α] : Set.chainHeight {x} = 1 := by
|
||||||
|
have le : Set.chainHeight {x} ≤ 1 := by
|
||||||
unfold Set.chainHeight
|
unfold Set.chainHeight
|
||||||
simp only [iSup_le_iff, Nat.cast_le_one]
|
simp only [iSup_le_iff, Nat.cast_le_one]
|
||||||
intro L h
|
intro L h
|
||||||
|
@ -369,6 +371,12 @@ private lemma singleton_chainHeight_le_one {α : Type _} {x : α} [Preorder α]
|
||||||
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
|
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
|
||||||
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
|
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
|
||||||
exact absurd h1 (lt_irrefl _)
|
exact absurd h1 (lt_irrefl _)
|
||||||
|
suffices : Set.chainHeight {x} > 0
|
||||||
|
· change _ < _ at this
|
||||||
|
rw [←ENat.one_le_iff_pos] at this
|
||||||
|
apply le_antisymm <;> trivial
|
||||||
|
by_contra x
|
||||||
|
simp only [gt_iff_lt, not_lt, nonpos_iff_eq_zero, Set.chainHeight_eq_zero_iff, Set.singleton_ne_empty] at x
|
||||||
|
|
||||||
/-- The ring of polynomials over a field has dimension one. -/
|
/-- The ring of polynomials over a field has dimension one. -/
|
||||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||||
|
@ -416,7 +424,7 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD
|
||||||
unfold height
|
unfold height
|
||||||
rw [sngletn]
|
rw [sngletn]
|
||||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||||
exact singleton_chainHeight_le_one
|
exact le_of_eq singleton_chainHeight_one
|
||||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||||
· obtain ⟨I, h⟩ := this
|
· obtain ⟨I, h⟩ := this
|
||||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||||
|
|
Loading…
Reference in a new issue