mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
Merge pull request #92 from GTBarkley/monalisa
Filled in proofs for Delta_1_
This commit is contained in:
commit
9a8111be4a
1 changed files with 36 additions and 13 deletions
|
@ -66,13 +66,6 @@ end section
|
|||
def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ)
|
||||
| f, 0 => f
|
||||
| f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n)
|
||||
section
|
||||
|
||||
#check Δ
|
||||
def f (n : ℤ) := n
|
||||
#eval (Δ f 1) 100
|
||||
-- #check (by (show_term unfold Δ) : Δ f 0=0)
|
||||
end section
|
||||
|
||||
-- (NO need to prove another direction) Constant polynomial function = constant function
|
||||
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||
|
@ -109,7 +102,6 @@ lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s :
|
|||
sorry
|
||||
· rw [h2, s2]
|
||||
|
||||
|
||||
-- PolyType 0 = constant function
|
||||
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ),
|
||||
(N ≤ n → f n = c)) ∧ c ≠ 0) := by
|
||||
|
@ -142,12 +134,44 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
|||
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by rfl
|
||||
--simp only [Δ]
|
||||
-- Δ of 1 times decreaes the polynomial type by one
|
||||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
||||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
||||
intro h
|
||||
simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
|
||||
rcases h with ⟨F, N, h⟩
|
||||
rcases h with ⟨h1, h2⟩
|
||||
have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + 1) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||||
exact Polynomial_shifting F 1
|
||||
rcases this with ⟨G, hG, hGG⟩
|
||||
let Poly := G - F
|
||||
use Poly
|
||||
constructor
|
||||
· use N
|
||||
intro n hn
|
||||
specialize hG n
|
||||
norm_num
|
||||
rw [hG]
|
||||
let h3 := h1
|
||||
specialize h3 n
|
||||
have this1 : f n = Polynomial.eval (n : ℚ) F := by tauto
|
||||
have this2 : f (n + 1) = Polynomial.eval ((n + 1) : ℚ) F := by
|
||||
specialize h1 (n + 1)
|
||||
have this3 : N ≤ n + 1 := by linarith
|
||||
aesop
|
||||
rw [←this1, ←this2]
|
||||
· have this1 : Polynomial.degree Poly = d := by
|
||||
have this2 : Polynomial.degree Poly ≤ d := by
|
||||
sorry
|
||||
have this3 : Polynomial.degree Poly ≥ d := by
|
||||
sorry
|
||||
sorry
|
||||
tauto
|
||||
|
||||
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||
lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
||||
sorry
|
||||
induction' s with s hs
|
||||
· norm_num
|
||||
· aesop
|
||||
|
||||
lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by
|
||||
induction' d with d hd
|
||||
· intro f h
|
||||
|
@ -189,7 +213,6 @@ lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀
|
|||
have this : PolyType f (d + 1) := by
|
||||
rcases h with ⟨H,c0⟩
|
||||
let g := (Δ f 1)
|
||||
-- let g := fun (x : ℤ) => (f (x + 1) - f (x))
|
||||
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by
|
||||
use c; use N
|
||||
constructor
|
||||
|
@ -204,7 +227,7 @@ lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀
|
|||
apply hd
|
||||
tauto
|
||||
exact Δ_1_ f d this2
|
||||
tauto
|
||||
exact this
|
||||
|
||||
-- [BH, 4.1.2] (a) => (b)
|
||||
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||||
|
|
Loading…
Reference in a new issue