almost finished base case

This commit is contained in:
monula95 dutta 2023-06-16 21:38:52 +00:00
parent 53c4675cb8
commit 96d1b2d83c
2 changed files with 116 additions and 113 deletions

View file

@ -6,13 +6,11 @@ import Mathlib.RingTheory.Artinian
import Mathlib.Order.Height
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.SimpleModule
import Mathlib.Algebra.Module.LinearMap
import Mathlib.Algebra.Field.Defs
import CommAlg.krull
#check Ideal.dim_field_eq_zero
#check Ideal.domain_dim_zero.isField
#check Ideal.Quotient.isDomain_iff_prime
-- Setting for "library_search"
set_option maxHeartbeats 0
@ -33,6 +31,7 @@ macro "obviously" : tactic =>
| ring; done; dbg_trace "it was ring"
| trivial; done; dbg_trace "it was trivial"
-- | nlinarith; done
| aesop; done; dbg_trace "it was aesop"
| fail "No, this is not obvious."))
@ -47,6 +46,8 @@ section
-- Definition of polynomail of type d
def PolyType (f : ) (d : ) := ∃ Poly : Polynomial , ∃ (N : ), ∀ (n : ), N ≤ n → f n = Polynomial.eval (n : ) Poly ∧ d = Polynomial.degree Poly
noncomputable def length ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < }
@ -84,8 +85,17 @@ noncomputable def dimensionmodule ( A : Type _) (M : Type _)
[CommRing A] [AddCommGroup M] [Module A M] := Ideal.krullDim (A (( : Submodule A M).annihilator))
lemma lengthfield ( k : Type _) [Field k] : length (k) (k) = 1 := by
sorry
lemma equaldim ( A : Type _) [CommRing A] (I : Ideal A): dimensionmodule (A) (A I) = Ideal.krullDim (A I) := by
sorry
lemma dim_iso ( A : Type _) (M : Type _) (N : Type _) [CommRing A] [AddCommGroup M] [Module A M] [AddCommGroup N] [Module A N] (h : Nonempty (M →ₗ[A] N)) : dimensionmodule A M = dimensionmodule A N := by
sorry
end
@ -135,15 +145,22 @@ def graded_ring_morphism (𝒜 : → Type _) ( : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup ( i)]
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing ] (f : (⨁ i, 𝒜 i) →+* (⨁ i, i)) := ∀ i, ∀ (r : 𝒜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0)
def graded_module_morphism (𝒜 : → Type _) (𝓜 : → Type _) (𝓝 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) := ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f)
structure GradedLinearMap (𝒜 : → Type _) (𝓜 : → Type _) (𝓝 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] [DirectSum.Gmodule 𝒜 𝓝]
extends LinearMap (RingHom.id (⨁ i, 𝒜 i)) (⨁ i, 𝓜 i) (⨁ i, 𝓝 i) where
respects_grading (i : ) (r : 𝓜 i) (j : ) : j ≠ i → toFun (DirectSum.of _ i r) j = 0
def graded_module_isomorphism (𝒜 : → Type _) (𝓜 : → Type _) (𝓝 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
(f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i))
:= (graded_module_morphism 𝒜 𝓜 𝓝 f) ∧ (Function.Bijective f)
/-- `𝓜 →ᵍₗ[𝒜] 𝓝` denotes the type of graded `𝒜`-linear maps from `𝓜` to `𝓝`. -/
notation:25 𝓜 " →ᵍₗ[" 𝒜:25 "] " 𝓝:0 => GradedLinearMap 𝒜 𝓜 𝓝
structure GradedLinearEquiv (𝒜 : → Type _) (𝓜 : → Type _) (𝓝 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
extends (⨁ i, 𝓜 i) ≃ (⨁ i, 𝓝 i), 𝓜 →ᵍₗ[𝒜] 𝓝
/-- `𝓜 ≃ᵍₗ[𝒜] 𝓝` denotes the type of graded `𝒜`-linear isomorphisms from `(⨁ i, 𝓜 i)` to `(⨁ i, 𝓝 i)`. -/
notation:25 𝓜 " ≃ᵍₗ[" 𝒜:25 "] " 𝓝:0 => GradedLinearEquiv 𝒜 𝓜 𝓝
def graded_ring_isomorphism (𝒜 : → Type _) (𝓑 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓑 i)]
@ -153,9 +170,7 @@ def graded_ring_isomorphism (𝒜 : → Type _) (𝓑 : → Type _)
def graded_ring_isomorphic (𝒜 : → Type _) (𝓑 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓑 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓑] := ∃ (f : (⨁ i, 𝒜 i) →+* (⨁ i, 𝓑 i)),graded_ring_isomorphism 𝒜 𝓑 f
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓑] := ∃ (f : (⨁ i, 𝒜 i) →+* (⨁ i, 𝓑 i)), graded_ring_isomorphism 𝒜 𝓑 f
-- def graded_submodule
-- (𝒜 : → Type _) (𝓜 : → Type _) (𝓝 : → Type _)
@ -173,38 +188,65 @@ class DirectSum.GalgebrA
(𝓜 : → Type _) [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝓜]
extends DirectSum.Gmodule 𝒜 𝓜
def graded_algebra_morphism (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(𝓜 : → Type _) [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝓜] [DirectSum.GalgebrA 𝒜 𝓜]
(𝓝 : → Type _) [∀ i, AddCommGroup (𝓝 i)] [DirectSum.GCommRing 𝓝] [DirectSum.GalgebrA 𝒜 𝓝]
(f : (⨁ i, 𝓜 i) →+* (⨁ i, 𝓝 i)) := (graded_ring_morphism 𝓜 𝓝 f) ∧ (graded_module_morphism 𝒜 𝓜 𝓝 f)
-- def graded_algebra_morphism (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
-- (𝓜 : → Type _) [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝓜] [DirectSum.GalgebrA 𝒜 𝓜]
-- (𝓝 : → Type _) [∀ i, AddCommGroup (𝓝 i)] [DirectSum.GCommRing 𝓝] [DirectSum.GalgebrA 𝒜 𝓝]
-- (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) := (graded_ring_morphism 𝓜 𝓝 f) ∧ (GradedLinearMap 𝒜 𝓜 𝓝 toFun)
-- @Quotient of a graded ring R by a graded ideal p is a graded R-alg, preserving each component
instance Quotient_of_graded_gradedring
(𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
: DirectSum.GCommRing (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
(𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) :
DirectSum.GCommRing (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
sorry
instance Quotient_of_graded_is_gradedalg
(𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
: DirectSum.GalgebrA 𝒜 (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
(𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) :
DirectSum.GalgebrA 𝒜 (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
sorry
section
variable (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
[LocalRing (𝒜 0)] (m : LocalRing.maximalIdeal (𝒜 0))
-- check if `Pi.Single` or something writes this more elegantly
def GradedOneComponent (i : ) : Type _ := ite (i = 0) (𝒜 0 LocalRing.maximalIdeal (𝒜 0)) PUnit
instance (i : ) : AddMonoid (GradedOneComponent 𝒜 i) := by
unfold GradedOneComponent
sorry -- split into 0 and nonzero cases and then `inferInstance`
instance : DirectSum.Gmodule 𝒜 (GradedOneComponent 𝒜) := by sorry
lemma Graded_local [StandardGraded 𝒜] (I : Ideal (⨁ i, 𝒜 i)) (hp : (HomogeneousMax 𝒜 I)) [∀ i, Module (𝒜 0) ((𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 I hp.2 i))] (art: IsArtinianRing (𝒜 0)) : (∀ (i : ), (i ≠ 0 → Nonempty (((𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 I hp.2 i)) →ₗ[𝒜 0] (𝒜 i))) ) := by
sorry
-- lemma Graded_local [StandardGraded 𝒜] (I : Ideal (⨁ i, 𝒜 i)) (hp : (HomogeneousMax 𝒜 I)) (art: IsArtinianRing (𝒜 0)) : (∀ (i : ), (i ≠ 0 → (Nonempty (((𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 I hp.2 i)) →ₛₗ[𝒜 0] (𝒜 i)))) ∧ (i = 0 → Nonempty (((𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 I hp.2 i)) →ₛₗ[𝒜 0] (𝒜 0 LocalRing.maximalIdeal (𝒜 0))))) := by
-- sorry
end
lemma Quotient_of_graded_ringiso (𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜](p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
(hm : 𝓜 = (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
: Nonempty ((⨁ i, (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)) ≃+* ((⨁ i, (𝒜 i))p)) := by
-- (hm : 𝓜 = (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
: Nonempty (((⨁ i, (𝒜 i))p) →ₗ[(⨁ i, 𝒜 i)] (⨁ i, (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i))) := by
sorry
def Is.Graded_local (𝒜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)][DirectSum.GCommRing 𝒜] := ∃! ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I)
lemma hilfun_eq (𝒜 : → Type _) (𝓜 : → Type _) (𝓝 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (iso : GradedLinearEquiv 𝒜 𝓜 𝓝)(hilbm : ) (Hhilbm: hilbert_function 𝒜 𝓜 hilbm) (hilbn : ) (Hhilbn: hilbert_function 𝒜 𝓝 hilbn) : ∀ (n : ), hilbm n = hilbn n := by
sorry
-- If A_0 is Artinian and local, then A is graded local
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : → Type _) (𝓜 : → Type _)
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃! ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := by
sorry
-- @Existence of a chain of submodules of graded submoduels of a f.g graded R-mod M
@ -238,11 +280,10 @@ lemma Associated_prime_of_graded_is_graded
-- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1)
theorem Hilbert_polynomial_d_ge_1 (d : ) (d1 : 1 ≤ d) (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
[DirectSum.Gmodule 𝒜 𝓜] [StandardGraded 𝒜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
(hilb : ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
: PolyType hilb (d - 1) := by
sorry
@ -253,7 +294,7 @@ theorem Hilbert_polynomial_d_ge_1_reduced
(d : ) (d1 : 1 ≤ d)
(𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
[DirectSum.Gmodule 𝒜 𝓜] [StandardGraded 𝒜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d)
(hilb : ) (Hhilb: hilbert_function 𝒜 𝓜 hilb)
@ -267,7 +308,7 @@ theorem Hilbert_polynomial_d_ge_1_reduced
-- If M is a finite graed R-Mod of dimension zero, then the Hilbert function H(M, n) = 0 for n >> 0
theorem Hilbert_polynomial_d_0 (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜]
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
[DirectSum.Gmodule 𝒜 𝓜] [StandardGraded 𝒜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
(hilb : ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
@ -275,82 +316,5 @@ theorem Hilbert_polynomial_d_0 (𝒜 : → Type _) (𝓜 : → Type _) [
sorry
#check Ideal.dim_field_eq_zero
#check Ideal.domain_dim_zero.isField
--#check Quotient.isDomain_iff_prime
#check DirectSum
-- f (g a) = f (g b)
-- DirectSum _ (fun i => ...) = DirectSum _ (fun i => ...)
theorem Hilbert_polynomial_d_0_reduced
(𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓜]
[DirectSum.GalgebrA 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
(hilb : ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (hq : HomogeneousPrime 𝒜 p)
(hm : ∀ i, 𝓜 i = ((𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
: (∃ (N : ), ∀ (n : ), n ≥ N → hilb n = 0) := by
let 𝓜' := fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)
have h : 𝓜 = 𝓜' := by
ext i
exact hm i
subst h
set R := ⨁ i, 𝒜 i
have : (⨁ i, 𝓜' i )= ⨁ i, ((𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
rfl
--have h1 : Nonempty ((⨁ i, 𝓜 i) ≃+* (Rp)) := by
-- apply Quotient_of_graded_ringiso 𝒜 p hp
-- have : Ideal.krullDim (R p) = 0 := by
-- calc 0 = dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) := by apply findim
-- _ = dimensionmodule (R) (R p) := by apply h1
-- _ = Ideal.krullDim (R_mod_p) := by apply equaldim
-- sorry
lemma
-- (reduced version) [BH, 4.1.3] when d = 0
-- If M is a finite graed R-Mod of dimension zero, and M = R 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) = 0 for n >> 0
-- theorem Hilbert_polynomial_d_0_reduced
-- (𝒜 : → Type _) (𝓜 : → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
-- [DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓜]
-- [DirectSum.GalgebrA 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
-- (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
-- (findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
-- (hilb : ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
-- (p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (hq : HomogeneousPrime 𝒜 p)
-- (hm : 𝓜 = (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
-- : (∃ (N : ), ∀ (n : ), n ≥ N → hilb n = 0) := by
-- set R := ⨁ i, 𝒜 i
-- have h := (Ideal.Quotient.isDomain_iff_prime p).mpr hq.1
-- have h1 : Nonempty ((⨁ i, 𝓜 i)) ≃+* (Rp)) := by
-- apply Quotient_of_graded_ringiso 𝒜 p hp
-- have : Ideal.krullDim (R p) = 0 := by
-- calc 0 = dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) := by apply findim
-- _ = dimensionmodule (R) (R p) := by apply h1
-- _ = Ideal.krullDim (R_mod_p) := by apply equaldim
-- sorry

39
CommAlg/hil_mine.lean Normal file
View file

@ -0,0 +1,39 @@
import CommAlg.final_hil_pol
import Mathlib.Algebra.Ring.Defs
set_option maxHeartbeats 0
theorem Hilbert_polynomial_d_0_reduced
(𝒜 : → Type _) [∀ i, AddCommGroup (𝒜 i)]
[DirectSum.GCommRing 𝒜][LocalRing (𝒜 0)] [StandardGraded 𝒜] (art: IsArtinianRing (𝒜 0)) (p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)) = 0)
(hilb : ) (Hhilb : hilbert_function 𝒜 (fun i => (𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)) hilb)
(hq : HomogeneousPrime 𝒜 p) (n : ) (n_0 : 0 < n)
: hilb n = 0 := by
have h1 : dimensionmodule (⨁ i, 𝒜 i) ((⨁ i, (𝒜 i))p) = dimensionmodule (⨁ i, 𝒜 i) (⨁ i, ((𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i))) := by
apply dim_iso (⨁ i, 𝒜 i) ((⨁ i, (𝒜 i))p) (⨁ i, ((𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
exact Quotient_of_graded_ringiso 𝒜 p hp
have h2 : dimensionmodule (⨁ i, 𝒜 i) ((⨁ i, (𝒜 i))p) = Ideal.krullDim ((⨁ i, (𝒜 i))p) := by
apply equaldim (⨁ i, 𝒜 i) p
have h3 : 0 = Ideal.krullDim ((⨁ i, 𝒜 i) p) := by
calc 0 = dimensionmodule (⨁ i, 𝒜 i) (⨁ i, ((𝒜 i)(Component_of_graded_as_addsubgroup 𝒜 p hp i))) := findim.symm
_ = dimensionmodule (⨁ i, 𝒜 i) ((⨁ i, (𝒜 i))p) := h1.symm
_ = Ideal.krullDim ((⨁ i, (𝒜 i))p) := h2
have h4 : IsDomain ((⨁ i, (𝒜 i))p) := (Ideal.Quotient.isDomain_iff_prime p).mpr hq.1
have h5 : IsField ((⨁ i, (𝒜 i))p) := Ideal.domain_dim_zero.isField (h3.symm)
have h6 : p.IsMaximal := Ideal.Quotient.maximal_of_isField p h5
have h7 : HomogeneousMax 𝒜 p := ⟨h6, hq.2⟩
-- have h8 : Nonempty ((⨁ i, 𝒜 i) p →+* (𝒜 0)(LocalRing.maximalIdeal (𝒜 0))) := Graded_local 𝒜 p h7 art
-- set m := LocalRing.maximalIdeal (𝒜 0)
-- have h0 : m.IsMaximal := LocalRing.maximalIdeal.isMaximal (𝒜 0)
-- have h9 : IsField ((𝒜 0)m) := (Ideal.Quotient.maximal_ideal_iff_isField_quotient m).mp h0
-- set k := ((𝒜 0)m)
have hilb n
sorry