golfed foofoo

This commit is contained in:
Andre 2023-06-16 02:29:33 -04:00
parent 04849a931f
commit 95ddb3c1ff

View file

@ -153,25 +153,25 @@ lemma PolyType_0 (f : ) : (PolyType f 0) ↔ (∃ (c : ), ∃ (N :
⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩
cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩
rcases this2 with ⟨c, hthis2⟩
use c; use N; intro n
constructor
· have this4 : Polynomial.eval (n : ) Poly = c := by
use c; use N; constructor
· intro n
have this4 : Polynomial.eval (n : ) Poly = c := by
rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast]
exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1])
· intro c0
simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero]
at this1
· rintro ⟨c, N, hh⟩
have H2 : (c : ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero]; exact (hh 0).2
have H2 : (c : ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero, hh]
exact ⟨Polynomial.C (c : ), N, fun n Nn
=> by rw [(hh n).1 Nn]; exact (((Poly_constant (Polynomial.C (c : ))
=> by rw [hh.1 n Nn]; exact (((Poly_constant (Polynomial.C (c : ))
(c : )).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩
-- Δ of 0 times preserves the function
lemma Δ_0 (f : ) : (Δ f 0) = f := by tauto
lemma Δ_0 (f : ) : (Δ f 0) = f := by rfl
--simp only [Δ]
-- Δ of 1 times decreaes the polynomial type by one
lemma Δ_1 (f : ) (d : ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by
lemma Δ_1 (f : ) (d : ): PolyType f (d + 1) → PolyType (Δ f 1) d := by
sorry
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
@ -181,22 +181,13 @@ lemma foofoo (d : ) : (f : ) → (PolyType f d) → (PolyType (Δ
induction' d with d hd
· intro f h
rw [Δ_0]
tauto
exact h
· intro f hf
have this1 : PolyType f (d + 1) := by tauto
have this2 : PolyType (Δ f (d + 1)) 0 := by
have this3 : PolyType (Δ f 1) d := by
have this4 : d + 1 > 0 := by positivity
have this5 : (d + 1) > 0 → PolyType f (d + 1) → PolyType (Δ f 1) d := Δ_1 f (d + 1)
exact this5 this4 this1
clear hf
specialize hd (Δ f 1)
have this4 : PolyType (Δ (Δ f 1) d) 0 := by tauto
rw [Δ_1_s_equiv_Δ_s_1] at this4
tauto
tauto
have this4 := hd (Δ f 1) $ (Δ_1 f d) hf
rwa [Δ_1_s_equiv_Δ_s_1] at this4
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ) (d : ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ) (d : ): PolyType f d → PolyType (Δ f d) 0 :=
fun h => (foofoo d f) h
lemma foofoofoo (d : ) : (f : ) → (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
induction' d with d hd
@ -218,12 +209,6 @@ lemma foofoofoo (d : ) : (f : ) → (∃ (c : ), ∃ (N : ),
sorry
tauto
-- [BH, 4.1.2] (a) => (b)
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
lemma a_to_b (f : ) (d : ) : (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by
sorry
-- intro h
-- rcases h with ⟨c, N, hh⟩
-- have H1 := λ n => (hh n).left
@ -242,19 +227,19 @@ lemma a_to_b (f : ) (d : ) : (∃ (c : ), ∃ (N : ), (∀ (
-- -- Induction step
-- · sorry
-- [BH, 4.1.2] (a) => (b)
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
lemma a_to_b (f : ) (d : ) : (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by
sorry
-- [BH, 4.1.2] (a) <= (b)
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
lemma b_to_a (f : ) (d : ) : PolyType f d → (∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by
intro h
have : PolyType (Δ f d) 0 := by
apply Δ_d_PolyType_d_to_PolyType_0
exact h
have this1 : (∃ (c : ), ∃ (N : ), (∀ (n : ), (N ≤ n → (Δ f d) n = c)) ∧ c ≠ 0) := by
rw [←PolyType_0]
exact this
exact this1
end
lemma b_to_a (f : ) (d : ) (poly : PolyType f d) :
(∃ (c : ), ∃ (N : ), (∀ (n : ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by
rw [←PolyType_0]; exact Δ_d_PolyType_d_to_PolyType_0 f d poly
end
-- @Additive lemma of length for a SES
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
section