mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
golfed foofoo
This commit is contained in:
parent
04849a931f
commit
95ddb3c1ff
1 changed files with 25 additions and 40 deletions
|
@ -153,25 +153,25 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩
|
⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩
|
||||||
cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩
|
cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩
|
||||||
rcases this2 with ⟨c, hthis2⟩
|
rcases this2 with ⟨c, hthis2⟩
|
||||||
use c; use N; intro n
|
use c; use N; constructor
|
||||||
constructor
|
· intro n
|
||||||
· have this4 : Polynomial.eval (n : ℚ) Poly = c := by
|
have this4 : Polynomial.eval (n : ℚ) Poly = c := by
|
||||||
rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast]
|
rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast]
|
||||||
exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1])
|
exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1])
|
||||||
· intro c0
|
· intro c0
|
||||||
simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero]
|
simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero]
|
||||||
at this1
|
at this1
|
||||||
· rintro ⟨c, N, hh⟩
|
· rintro ⟨c, N, hh⟩
|
||||||
have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero]; exact (hh 0).2
|
have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero, hh]
|
||||||
exact ⟨Polynomial.C (c : ℚ), N, fun n Nn
|
exact ⟨Polynomial.C (c : ℚ), N, fun n Nn
|
||||||
=> by rw [(hh n).1 Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ))
|
=> by rw [hh.1 n Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ))
|
||||||
(c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩
|
(c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩
|
||||||
|
|
||||||
-- Δ of 0 times preserves the function
|
-- Δ of 0 times preserves the function
|
||||||
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto
|
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by rfl
|
||||||
|
--simp only [Δ]
|
||||||
-- Δ of 1 times decreaes the polynomial type by one
|
-- Δ of 1 times decreaes the polynomial type by one
|
||||||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by
|
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||||
|
@ -181,22 +181,13 @@ lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
· intro f h
|
· intro f h
|
||||||
rw [Δ_0]
|
rw [Δ_0]
|
||||||
tauto
|
exact h
|
||||||
· intro f hf
|
· intro f hf
|
||||||
have this1 : PolyType f (d + 1) := by tauto
|
have this4 := hd (Δ f 1) $ (Δ_1 f d) hf
|
||||||
have this2 : PolyType (Δ f (d + 1)) 0 := by
|
rwa [Δ_1_s_equiv_Δ_s_1] at this4
|
||||||
have this3 : PolyType (Δ f 1) d := by
|
|
||||||
have this4 : d + 1 > 0 := by positivity
|
|
||||||
have this5 : (d + 1) > 0 → PolyType f (d + 1) → PolyType (Δ f 1) d := Δ_1 f (d + 1)
|
|
||||||
exact this5 this4 this1
|
|
||||||
clear hf
|
|
||||||
specialize hd (Δ f 1)
|
|
||||||
have this4 : PolyType (Δ (Δ f 1) d) 0 := by tauto
|
|
||||||
rw [Δ_1_s_equiv_Δ_s_1] at this4
|
|
||||||
tauto
|
|
||||||
tauto
|
|
||||||
|
|
||||||
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := fun h => (foofoo d f) h
|
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 :=
|
||||||
|
fun h => (foofoo d f) h
|
||||||
|
|
||||||
lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
|
@ -218,12 +209,6 @@ lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ),
|
||||||
sorry
|
sorry
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- [BH, 4.1.2] (a) => (b)
|
|
||||||
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
|
||||||
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by
|
|
||||||
sorry
|
|
||||||
-- intro h
|
-- intro h
|
||||||
-- rcases h with ⟨c, N, hh⟩
|
-- rcases h with ⟨c, N, hh⟩
|
||||||
-- have H1 := λ n => (hh n).left
|
-- have H1 := λ n => (hh n).left
|
||||||
|
@ -242,19 +227,19 @@ lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (
|
||||||
-- -- Induction step
|
-- -- Induction step
|
||||||
-- · sorry
|
-- · sorry
|
||||||
|
|
||||||
|
|
||||||
|
-- [BH, 4.1.2] (a) => (b)
|
||||||
|
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||||||
|
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → PolyType f d := by
|
||||||
|
sorry
|
||||||
|
|
||||||
-- [BH, 4.1.2] (a) <= (b)
|
-- [BH, 4.1.2] (a) <= (b)
|
||||||
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
||||||
lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by
|
lemma b_to_a (f : ℤ → ℤ) (d : ℕ) (poly : PolyType f d) :
|
||||||
intro h
|
(∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) := by
|
||||||
have : PolyType (Δ f d) 0 := by
|
rw [←PolyType_0]; exact Δ_d_PolyType_d_to_PolyType_0 f d poly
|
||||||
apply Δ_d_PolyType_d_to_PolyType_0
|
|
||||||
exact h
|
|
||||||
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), (N ≤ n → (Δ f d) n = c)) ∧ c ≠ 0) := by
|
|
||||||
rw [←PolyType_0]
|
|
||||||
exact this
|
|
||||||
exact this1
|
|
||||||
end
|
|
||||||
|
|
||||||
|
end
|
||||||
-- @Additive lemma of length for a SES
|
-- @Additive lemma of length for a SES
|
||||||
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
|
-- Given a SES 0 → A → B → C → 0, then length (A) - length (B) + length (C) = 0
|
||||||
section
|
section
|
||||||
|
|
Loading…
Reference in a new issue