Tried to avoid the finiteness condition on height P

This commit is contained in:
Sayantan Santra 2023-06-14 23:51:46 -07:00
parent b7aae64f76
commit 947c28f001
Signed by: SinTan1729
GPG key ID: EB3E68BFBA25C85F
2 changed files with 39 additions and 18 deletions

View file

@ -4,6 +4,7 @@ import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Ideal.MinimalPrime
import Mathlib.RingTheory.Localization.AtPrime import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic
@ -270,8 +271,12 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
lemma dim_le_dim_polynomial_add_one [Nontrivial R] : lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry krullDim R + 1 ≤ krullDim (Polynomial R) := sorry
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] : -- lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
krullDim R + 1 = krullDim (Polynomial R) := sorry -- krullDim R + 1 = krullDim (Polynomial R) := sorry
lemma krull_height_theorem [Nontrivial R] [IsNoetherianRing R] (P: PrimeSpectrum R) (S: Finset R)
(h: P.asIdeal ∈ Ideal.minimalPrimes (Ideal.span S)) : height P ≤ S.card := by
sorry
lemma dim_mvPolynomial [Field K] (n : ) : krullDim (MvPolynomial (Fin n) K) = n := sorry lemma dim_mvPolynomial [Field K] (n : ) : krullDim (MvPolynomial (Fin n) K) = n := sorry

View file

@ -8,38 +8,54 @@ import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Data.Set.Ncard import Mathlib.Data.Set.Ncard
import CommAlg.krull
namespace Ideal namespace Ideal
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R) variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl /--
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl -- noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl -- noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
-- lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
-- lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
-- lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
lemma dim_le_dim_polynomial_add_one [Nontrivial R] : -- lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it -- krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file -- lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
lemma primeIdeal_finite_height_of_noetherianRing [Nontrivial R] [IsNoetherianRing R] (P: PrimeSpectrum R) : height P ≠ := by -- lemma primeIdeal_finite_height_of_noetherianRing [Nontrivial R] [IsNoetherianRing R]
sorry -- (P: PrimeSpectrum R) : height P ≠ := by
-- sorry
--/
lemma exist_elts_MinimalOver_of_primeIdeal_of_noetherianRing [Nontrivial R] [IsNoetherianRing R] (P: PrimeSpectrum R) : lemma exist_elts_MinimalOver_of_primeIdeal_of_noetherianRing [Nontrivial R] [IsNoetherianRing R]
(P: PrimeSpectrum R) (h : height P < ) :
∃S : Set R, Set.ncard s = height P ∧ P.asIdeal ∈ Ideal.minimalPrimes (Ideal.span S) := by ∃S : Set R, Set.ncard s = height P ∧ P.asIdeal ∈ Ideal.minimalPrimes (Ideal.span S) := by
sorry sorry
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] : lemma dim_eq_dim_polynomial_add_one [h1: Nontrivial R] [IsNoetherianRing R] :
krullDim R + 1 = krullDim (Polynomial R) := by krullDim R + 1 = krullDim (Polynomial R) := by
rw [le_antisymm_iff] rw [le_antisymm_iff]
constructor constructor
· exact dim_le_dim_polynomial_add_one · exact dim_le_dim_polynomial_add_one
· unfold krullDim · by_cases krullDim R =
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by calc
krullDim (Polynomial R) ≤ := le_top
_ ≤ krullDim R := top_le_iff.mpr h
_ ≤ krullDim R + 1 := by
apply le_of_eq
rw [h]
rfl
have h:= Ne.lt_top h
unfold krullDim
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞)
≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
intro P intro P
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
have : ∃ M, Ideal.IsMaximal M ∧ P.asIdeal ≤ M := by have : ∃ M, Ideal.IsMaximal M ∧ P.asIdeal ≤ M := by
@ -53,7 +69,6 @@ lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
simp only [WithBot.coe_le_coe] simp only [WithBot.coe_le_coe]
have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by
-- Prime avoidance is called subset_union_prime -- Prime avoidance is called subset_union_prime
sorry sorry
obtain ⟨I, h⟩ := this obtain ⟨I, h⟩ := this
use I use I
@ -62,7 +77,8 @@ lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
apply @le_iSup (WithBot ℕ∞) _ _ _ I apply @le_iSup (WithBot ℕ∞) _ _ _ I
exact ge_trans this IP exact ge_trans this IP
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1)
≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1) fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
apply iSup_le apply iSup_le