mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
added some lemmas
This commit is contained in:
parent
ab1c24cd8b
commit
8b2be97b5a
1 changed files with 27 additions and 3 deletions
|
@ -19,6 +19,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|||
-/
|
||||
|
||||
namespace Ideal
|
||||
open LocalRing
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
|
||||
|
@ -32,10 +33,33 @@ lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpe
|
|||
|
||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||
|
||||
lemma krullDim_le_iff (R : Type) [CommRing R] (n : ℕ) :
|
||||
iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) ≤ n ↔
|
||||
∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by
|
||||
apply Set.chainHeight_mono
|
||||
intro J' hJ'
|
||||
show J' < J
|
||||
exact lt_of_lt_of_le hJ' I_le_J
|
||||
|
||||
lemma krullDim_le_iff (R : Type) [CommRing R] (n : ℕ) :
|
||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||
|
||||
lemma krullDim_le_iff' (R : Type) [CommRing R] (n : ℕ∞) :
|
||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||
|
||||
@[simp]
|
||||
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
||||
|
||||
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
||||
apply le_antisymm
|
||||
. rw [krullDim_le_iff']
|
||||
intro I
|
||||
apply WithBot.coe_mono
|
||||
apply height_le_of_le
|
||||
apply le_maximalIdeal
|
||||
exact I.2.1
|
||||
. simp
|
||||
|
||||
#check height_le_krullDim
|
||||
--some propositions that would be nice to be able to eventually
|
||||
|
||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := sorry
|
||||
|
|
Loading…
Reference in a new issue