mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
added docstrings to krull.lean
This commit is contained in:
parent
08711d7689
commit
89d7be5bc9
1 changed files with 16 additions and 0 deletions
|
@ -55,6 +55,7 @@ lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||||
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||||
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
||||||
|
|
||||||
|
/-- The Krull dimension of a local ring is the height of its maximal ideal. -/
|
||||||
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
||||||
apply le_antisymm
|
apply le_antisymm
|
||||||
. rw [krullDim_le_iff']
|
. rw [krullDim_le_iff']
|
||||||
|
@ -65,6 +66,8 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
|
||||||
exact I.2.1
|
exact I.2.1
|
||||||
. simp only [height_le_krullDim]
|
. simp only [height_le_krullDim]
|
||||||
|
|
||||||
|
/-- The height of a prime `𝔭` is greater than `n` if and only if there is a chain of primes less than `𝔭`
|
||||||
|
with length `n + 1`. -/
|
||||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||||
rcases n with _ | n
|
rcases n with _ | n
|
||||||
|
@ -87,6 +90,7 @@ height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀
|
||||||
norm_cast at hc
|
norm_cast at hc
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
/-- Form of `lt_height_iff''` for rewriting with the height coerced to `WithBot ℕ∞`. -/
|
||||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||||
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||||
show (_ < _) ↔ _
|
show (_ < _) ↔ _
|
||||||
|
@ -96,9 +100,11 @@ height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain'
|
||||||
#check height_le_krullDim
|
#check height_le_krullDim
|
||||||
--some propositions that would be nice to be able to eventually
|
--some propositions that would be nice to be able to eventually
|
||||||
|
|
||||||
|
/-- The prime spectrum of the zero ring is empty. -/
|
||||||
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||||||
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||||
|
|
||||||
|
/-- A CommRing has empty prime spectrum if and only if it is the zero ring. -/
|
||||||
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||||
constructor
|
constructor
|
||||||
. contrapose
|
. contrapose
|
||||||
|
@ -122,17 +128,20 @@ lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||||
. rw [h.forall_iff]
|
. rw [h.forall_iff]
|
||||||
trivial
|
trivial
|
||||||
|
|
||||||
|
/-- Nonzero rings have Krull dimension in ℕ∞ -/
|
||||||
lemma krullDim_nonneg_of_nontrivial (R : Type _) [CommRing R] [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
lemma krullDim_nonneg_of_nontrivial (R : Type _) [CommRing R] [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||||||
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||||||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||||
use k
|
use k
|
||||||
|
|
||||||
|
/-- An ideal which is less than a prime is not a maximal ideal. -/
|
||||||
lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h : p < q) : ¬IsMaximal p := by
|
lemma not_maximal_of_lt_prime {p : Ideal R} {q : Ideal R} (hq : IsPrime q) (h : p < q) : ¬IsMaximal p := by
|
||||||
intro hp
|
intro hp
|
||||||
apply IsPrime.ne_top hq
|
apply IsPrime.ne_top hq
|
||||||
apply (IsCoatom.lt_iff hp.out).mp
|
apply (IsCoatom.lt_iff hp.out).mp
|
||||||
exact h
|
exact h
|
||||||
|
|
||||||
|
/-- Krull dimension is ≤ 0 if and only if all primes are maximal. -/
|
||||||
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||||
show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _
|
show ((_ : WithBot ℕ∞) ≤ (0 : ℕ)) ↔ _
|
||||||
rw [krullDim_le_iff R 0]
|
rw [krullDim_le_iff R 0]
|
||||||
|
@ -168,6 +177,7 @@ lemma dim_le_zero_iff : krullDim R ≤ 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal
|
||||||
apply not_maximal_of_lt_prime I.IsPrime
|
apply not_maximal_of_lt_prime I.IsPrime
|
||||||
exact hc2
|
exact hc2
|
||||||
|
|
||||||
|
/-- For a nonzero ring, Krull dimension is 0 if and only if all primes are maximal. -/
|
||||||
lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||||
rw [←dim_le_zero_iff]
|
rw [←dim_le_zero_iff]
|
||||||
obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial R
|
obtain ⟨n, hn⟩ := krullDim_nonneg_of_nontrivial R
|
||||||
|
@ -179,6 +189,7 @@ lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum
|
||||||
. rw [h']
|
. rw [h']
|
||||||
. exact le_antisymm h' this
|
. exact le_antisymm h' this
|
||||||
|
|
||||||
|
/-- In a field, the unique prime ideal is the zero ideal. -/
|
||||||
@[simp]
|
@[simp]
|
||||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||||
constructor
|
constructor
|
||||||
|
@ -190,6 +201,7 @@ lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P =
|
||||||
rw [botP]
|
rw [botP]
|
||||||
exact bot_prime
|
exact bot_prime
|
||||||
|
|
||||||
|
/-- In a field, all primes have height 0. -/
|
||||||
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||||
unfold height
|
unfold height
|
||||||
simp
|
simp
|
||||||
|
@ -205,10 +217,12 @@ lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : heig
|
||||||
have : J ≠ P := ne_of_lt JlP
|
have : J ≠ P := ne_of_lt JlP
|
||||||
contradiction
|
contradiction
|
||||||
|
|
||||||
|
/-- The Krull dimension of a field is 0. -/
|
||||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
unfold krullDim
|
unfold krullDim
|
||||||
simp [field_prime_height_zero]
|
simp [field_prime_height_zero]
|
||||||
|
|
||||||
|
/-- A domain with Krull dimension 0 is a field. -/
|
||||||
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
by_contra x
|
by_contra x
|
||||||
rw [Ring.not_isField_iff_exists_prime] at x
|
rw [Ring.not_isField_iff_exists_prime] at x
|
||||||
|
@ -230,6 +244,7 @@ lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim
|
||||||
aesop
|
aesop
|
||||||
contradiction
|
contradiction
|
||||||
|
|
||||||
|
/-- A domain has Krull dimension 0 if and only if it is a field. -/
|
||||||
lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||||
constructor
|
constructor
|
||||||
· exact domain_dim_zero.isField
|
· exact domain_dim_zero.isField
|
||||||
|
@ -261,6 +276,7 @@ lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ 1 := by
|
||||||
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
|
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
|
||||||
exact (not_maximal_of_lt_prime p.IsPrime hc2) H
|
exact (not_maximal_of_lt_prime p.IsPrime hc2) H
|
||||||
|
|
||||||
|
/-- The Krull dimension of a PID is at most 1. -/
|
||||||
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by
|
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by
|
||||||
rw [dim_le_one_iff]
|
rw [dim_le_one_iff]
|
||||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||||
|
|
Loading…
Reference in a new issue