mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
TESTMOna
This commit is contained in:
parent
e22b18e7c5
commit
871f38239c
2 changed files with 55 additions and 0 deletions
41
comm_alg/Defhil.lean
Normal file
41
comm_alg/Defhil.lean
Normal file
|
@ -0,0 +1,41 @@
|
||||||
|
import Mathlib
|
||||||
|
|
||||||
|
variable {R : Type _} (M A B C : Type _) [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup A] [Module R A] [AddCommGroup B] [Module R B] [AddCommGroup C] [Module R C]
|
||||||
|
variable (A' B' C' : ModuleCat R)
|
||||||
|
#check ModuleCat.of R A
|
||||||
|
|
||||||
|
example : Module R A' := inferInstance
|
||||||
|
|
||||||
|
#check ModuleCat.of R B
|
||||||
|
|
||||||
|
example : Module R B' := inferInstance
|
||||||
|
|
||||||
|
#check ModuleCat.of R C
|
||||||
|
|
||||||
|
example : Module R C' := inferInstance
|
||||||
|
|
||||||
|
namespace CategoryTheory
|
||||||
|
|
||||||
|
noncomputable instance abelian : Abelian (ModuleCat.{v} R) := inferInstance
|
||||||
|
noncomputable instance haszero : Limits.HasZeroMorphisms (ModuleCat.{v} R) := inferInstance
|
||||||
|
|
||||||
|
#check (A B : Submodule _ _) → (A ≤ B)
|
||||||
|
|
||||||
|
#check Preorder (Submodule _ _)
|
||||||
|
|
||||||
|
#check krullDim (Submodule _ _)
|
||||||
|
|
||||||
|
noncomputable def length := krullDim (Submodule R M)
|
||||||
|
|
||||||
|
open ZeroObject
|
||||||
|
|
||||||
|
namespace HasZeroMorphisms
|
||||||
|
|
||||||
|
open LinearMap
|
||||||
|
|
||||||
|
#check length M
|
||||||
|
|
||||||
|
#check ModuleCat.of R
|
||||||
|
|
||||||
|
lemma length_additive_shortexact {f : A ⟶ B} {g : B ⟶ C} (h : ShortExact f g) : length B = length A + length C := sorry
|
||||||
|
|
14
comm_alg/hilpol.lean
Normal file
14
comm_alg/hilpol.lean
Normal file
|
@ -0,0 +1,14 @@
|
||||||
|
import Mathlib
|
||||||
|
|
||||||
|
|
||||||
|
--class GradedRing
|
||||||
|
|
||||||
|
variable [GradedRing S]
|
||||||
|
|
||||||
|
namespace DirectSum
|
||||||
|
|
||||||
|
namespace ideal
|
||||||
|
|
||||||
|
def S_+ := ⊕ (i ≥ 0) S_i
|
||||||
|
|
||||||
|
lemma A set of homogeneous elements fi∈S+ generates S as an algebra over S0 ↔ they generate S+ as an ideal of S.
|
Loading…
Reference in a new issue