mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
fixed indentation for PolyType_0
This commit is contained in:
parent
01f628cf98
commit
85263016c1
1 changed files with 10 additions and 5 deletions
|
@ -151,9 +151,11 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
· rintro ⟨Poly, ⟨N, ⟨H1, H2⟩⟩⟩
|
· rintro ⟨Poly, ⟨N, ⟨H1, H2⟩⟩⟩
|
||||||
have this1 : Polynomial.degree Poly = 0 := by rw [← H2]; rfl
|
have this1 : Polynomial.degree Poly = 0 := by rw [← H2]; rfl
|
||||||
have this2 : ∃ (c : ℤ), Poly = Polynomial.C (c : ℚ) := by
|
have this2 : ∃ (c : ℤ), Poly = Polynomial.C (c : ℚ) := by
|
||||||
have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) := ⟨Poly.coeff 0, Polynomial.eq_C_of_degree_eq_zero (by rw[← H2]; rfl)⟩
|
have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) :=
|
||||||
|
⟨Poly.coeff 0, Polynomial.eq_C_of_degree_eq_zero (by rw[← H2]; rfl)⟩
|
||||||
cases' HH with c HHH
|
cases' HH with c HHH
|
||||||
have HHHH : ∃ (d : ℤ), d = c := ⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩
|
have HHHH : ∃ (d : ℤ), d = c :=
|
||||||
|
⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩
|
||||||
cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩
|
cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩
|
||||||
rcases this2 with ⟨c, hthis2⟩
|
rcases this2 with ⟨c, hthis2⟩
|
||||||
use c; use N; intro n
|
use c; use N; intro n
|
||||||
|
@ -162,10 +164,13 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast]
|
rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast]
|
||||||
exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1])
|
exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1])
|
||||||
· intro c0
|
· intro c0
|
||||||
simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero] at this1
|
simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero]
|
||||||
|
at this1
|
||||||
· rintro ⟨c, N, hh⟩
|
· rintro ⟨c, N, hh⟩
|
||||||
have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero]; exact (hh 0).2
|
have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero]; exact (hh 0).2
|
||||||
exact ⟨Polynomial.C (c : ℚ), N, fun n Nn => by rw [(hh n).1 Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ)) (c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩
|
exact ⟨Polynomial.C (c : ℚ), N, fun n Nn
|
||||||
|
=> by rw [(hh n).1 Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ))
|
||||||
|
(c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue