mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
commit
828bf44695
1 changed files with 146 additions and 19 deletions
165
CommAlg/Leo.lean
165
CommAlg/Leo.lean
|
@ -1,6 +1,7 @@
|
|||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.RingTheory.FiniteType
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.Polynomial.Quotient
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
|
@ -9,6 +10,40 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
import CommAlg.krull
|
||||
|
||||
section AddToOrder
|
||||
|
||||
open List hiding le_antisymm
|
||||
open OrderDual
|
||||
|
||||
universe u v
|
||||
|
||||
variable {α β : Type _}
|
||||
variable [LT α] [LT β] (s t : Set α)
|
||||
|
||||
namespace Set
|
||||
|
||||
theorem append_mem_subchain_iff :
|
||||
l ++ l' ∈ s.subchain ↔ l ∈ s.subchain ∧ l' ∈ s.subchain ∧ ∀ a ∈ l.getLast?, ∀ b ∈ l'.head?, a < b := by
|
||||
simp [subchain, chain'_append]
|
||||
aesop
|
||||
|
||||
end Set
|
||||
|
||||
namespace List
|
||||
#check Option
|
||||
|
||||
theorem getLast?_map (l : List α) (f : α → β) :
|
||||
(l.map f).getLast? = Option.map f (l.getLast?) := by
|
||||
cases' l with a l
|
||||
. rfl
|
||||
induction' l with b l ih
|
||||
. rfl
|
||||
. simp [List.getLast?_cons_cons, ih]
|
||||
|
||||
|
||||
end List
|
||||
end AddToOrder
|
||||
|
||||
--trying and failing to prove ht p = dim R_p
|
||||
section Localization
|
||||
|
||||
|
@ -102,6 +137,8 @@ section Polynomial
|
|||
|
||||
open Ideal Polynomial
|
||||
variables {R : Type _} [CommRing R]
|
||||
variable (J : Ideal R[X])
|
||||
#check Ideal.comap C J
|
||||
|
||||
--given ideals I J, I ⊔ J is their sum
|
||||
--given a in R, span {a} is the ideal generated by a
|
||||
|
@ -109,48 +146,138 @@ variables {R : Type _} [CommRing R]
|
|||
--to show p[x] is prime, show p[x] is the kernel of the map R[x] → R → R/p
|
||||
#check RingHom.ker_isPrime
|
||||
|
||||
def adj_x_map (I : Ideal R) : R[X] →+* R ⧸ I := (Ideal.Quotient.mk I).comp (evalRingHom 0)
|
||||
def adj_x_map (I : Ideal R) : R[X] →+* R ⧸ I := (Ideal.Quotient.mk I).comp constantCoeff
|
||||
--def adj_x_map' (I : Ideal R) : R[X] →+* R ⧸ I := (Ideal.Quotient.mk I).comp (evalRingHom 0)
|
||||
def adjoin_x (I : Ideal R) : Ideal (Polynomial R) := RingHom.ker (adj_x_map I)
|
||||
def adjoin_x' (I : PrimeSpectrum R) : PrimeSpectrum (Polynomial R) where
|
||||
asIdeal := adjoin_x I.asIdeal
|
||||
IsPrime := RingHom.ker_isPrime _
|
||||
|
||||
/- This somehow isn't in Mathlib? -/
|
||||
@[simp]
|
||||
theorem span_singleton_one : span ({0} : Set R) = ⊥ := by simp only [span_singleton_eq_bot]
|
||||
|
||||
theorem coeff_C_eq : RingHom.comp constantCoeff C = RingHom.id R := by ext; simp
|
||||
|
||||
variable (I : PrimeSpectrum R)
|
||||
#check RingHom.ker (C.comp (Ideal.Quotient.mk I.asIdeal))
|
||||
--#check Ideal.Quotient.mk I.asIdeal
|
||||
|
||||
def map_prime' (I : PrimeSpectrum R) : IsPrime (I.asIdeal.map C) := Ideal.isPrime_map_C_of_isPrime I.IsPrime
|
||||
|
||||
def map_prime'' (I : PrimeSpectrum R) : PrimeSpectrum R[X] := ⟨I.asIdeal.map C, map_prime' I⟩
|
||||
|
||||
@[simp]
|
||||
lemma adj_x_comp_C (I : Ideal R) : RingHom.comp (adj_x_map I) C = Ideal.Quotient.mk I := by
|
||||
ext x; simp [adj_x_map]
|
||||
|
||||
-- ideal.mem_quotient_iff_mem_sup
|
||||
lemma adjoin_x_eq (I : Ideal R) : adjoin_x I = I.map C ⊔ Ideal.span {X} := by
|
||||
apply le_antisymm
|
||||
. sorry
|
||||
. rintro p hp
|
||||
have h : ∃ q r, p = C r + X * q := ⟨p.divX, p.coeff 0, p.divX_mul_X_add.symm.trans $ by ring⟩
|
||||
obtain ⟨q, r, rfl⟩ := h
|
||||
suffices : r ∈ I
|
||||
. simp only [Submodule.mem_sup, Ideal.mem_span_singleton]
|
||||
refine' ⟨C r, Ideal.mem_map_of_mem C this, X * q, ⟨q, rfl⟩, rfl⟩
|
||||
rw [adjoin_x, adj_x_map, RingHom.mem_ker, RingHom.comp_apply] at hp
|
||||
rw [constantCoeff_apply, coeff_add, coeff_C_zero, coeff_X_mul_zero, add_zero] at hp
|
||||
rwa [←RingHom.mem_ker, Ideal.mk_ker] at hp
|
||||
. rw [sup_le_iff]
|
||||
constructor
|
||||
. simp [adjoin_x, RingHom.ker, ←map_le_iff_le_comap, Ideal.map_map]
|
||||
. simp [span_le, adjoin_x, RingHom.mem_ker, adj_x_map]
|
||||
|
||||
lemma adjoin_x_inj {I J : Ideal R} (h : adjoin_x I = adjoin_x J) : I = J := by
|
||||
simp [adjoin_x_eq] at h
|
||||
have H : Ideal.map constantCoeff (Ideal.map C I ⊔ span {X}) =
|
||||
Ideal.map constantCoeff (Ideal.map C J ⊔ span {X}) := by rw [h]
|
||||
simp [Ideal.map_sup, Ideal.map_span, Ideal.map_map, coeff_C_eq] at H
|
||||
exact H
|
||||
|
||||
|
||||
lemma map_lt_adjoin_x (I : PrimeSpectrum R) : map_prime'' I < adjoin_x' I := by
|
||||
simp [map_prime'', adjoin_x', adjoin_x_eq]
|
||||
show Ideal.map C I.asIdeal < Ideal.map C I.asIdeal ⊔ span {X}
|
||||
simp [Ideal.span_le, mem_map_C_iff]
|
||||
use 1
|
||||
simp
|
||||
intro h
|
||||
apply I.IsPrime.ne_top'
|
||||
rw [Ideal.eq_top_iff_one]
|
||||
exact h
|
||||
|
||||
lemma map_inj {I J : Ideal R} (h : I.map C = J.map C) : I = J := by
|
||||
have H : Ideal.map constantCoeff (Ideal.map C I) =
|
||||
Ideal.map constantCoeff (Ideal.map C J) := by rw [h]
|
||||
simp [Ideal.map_map, coeff_C_eq] at H
|
||||
exact H
|
||||
|
||||
lemma map_strictmono (I J : Ideal R) (h : I < J) : I.map C < J.map C := by
|
||||
rw [lt_iff_le_and_ne] at h ⊢
|
||||
constructor
|
||||
. apply map_mono h.1
|
||||
. intro H
|
||||
exact h.2 (map_inj H)
|
||||
|
||||
lemma adjoin_x_strictmono (I J : Ideal R) (h : I < J) : adjoin_x I < adjoin_x J := by
|
||||
rw [lt_iff_le_and_ne] at h ⊢
|
||||
rw [adjoin_x_eq, adjoin_x_eq]
|
||||
constructor
|
||||
. apply sup_le_sup_right
|
||||
. rw [adjoin_x_eq, adjoin_x_eq]
|
||||
apply sup_le_sup_right
|
||||
apply map_mono h.1
|
||||
. intro H
|
||||
have H' : Ideal.comap C (Ideal.map C I ⊔ span {X}) = Ideal.comap C (Ideal.map C J ⊔ span {X})
|
||||
. rw [H]
|
||||
sorry
|
||||
exact h.2 (adjoin_x_inj H)
|
||||
|
||||
example (n : ℕ∞) : n + 0 = n := by simp?
|
||||
|
||||
#eval List.Chain' (· < ·) [2,3]
|
||||
example : [4,5] ++ [2] = [4,5,2] := rfl
|
||||
#eval [2,4,5].map (λ n => n + n)
|
||||
|
||||
/- Given an ideal p in R, define the ideal p[x] in R[x] -/
|
||||
lemma ht_adjoin_x_eq_ht_add_one (I : PrimeSpectrum R) : height I + 1 ≤ height (adjoin_x' I) := by
|
||||
have H : ∀ l ∈ {J : PrimeSpectrum R | J < I}.subchain, ∃
|
||||
|
||||
lemma ne_bot_iff_exists (n : WithBot ℕ∞) : n ≠ ⊥ ↔ ∃ m : ℕ∞, n = m := by
|
||||
cases' n with n;
|
||||
simp
|
||||
intro x hx
|
||||
cases hx
|
||||
simp
|
||||
use n
|
||||
rfl
|
||||
lemma ht_adjoin_x_eq_ht_add_one [Nontrivial R] (I : PrimeSpectrum R) : height I + 1 ≤ height (adjoin_x' I) := by
|
||||
suffices H : height I + (1 : ℕ) ≤ height (adjoin_x' I) + (0 : ℕ)
|
||||
. norm_cast at H; rw [add_zero] at H; exact H
|
||||
rw [height, height, Set.chainHeight_add_le_chainHeight_add {J | J < I} _ 1 0]
|
||||
intro l hl
|
||||
use ((l.map map_prime'') ++ [map_prime'' I])
|
||||
constructor
|
||||
. simp [Set.append_mem_subchain_iff]
|
||||
refine' ⟨_,_,_⟩
|
||||
. show (List.map map_prime'' l).Chain' (· < ·) ∧ ∀ i ∈ _, i ∈ _
|
||||
constructor
|
||||
. apply List.chain'_map_of_chain' map_prime''
|
||||
intro a b hab
|
||||
apply map_strictmono a.asIdeal b.asIdeal
|
||||
exact hab
|
||||
exact hl.1
|
||||
. intro i hi
|
||||
rw [List.mem_map] at hi
|
||||
obtain ⟨a, ha, rfl⟩ := hi
|
||||
show map_prime'' a < adjoin_x' I
|
||||
calc map_prime'' a < map_prime'' I := by apply map_strictmono; apply hl.2; apply ha
|
||||
_ < adjoin_x' I := by apply map_lt_adjoin_x
|
||||
. apply map_lt_adjoin_x
|
||||
. intro a ha
|
||||
have H : ∃ b : PrimeSpectrum R, b ∈ l ∧ map_prime'' b = a
|
||||
. have H2 : l ≠ []
|
||||
. intro h
|
||||
rw [h] at ha
|
||||
tauto
|
||||
use l.getLast H2
|
||||
refine' ⟨List.getLast_mem H2, _⟩
|
||||
have H3 : l.map map_prime'' ≠ []
|
||||
. intro hl
|
||||
apply H2
|
||||
apply List.eq_nil_of_map_eq_nil hl
|
||||
rw [List.getLast?_eq_getLast _ H3, Option.some_inj] at ha
|
||||
simp [←ha, List.getLast_map _ H2]
|
||||
obtain ⟨b, hb, rfl⟩ := H
|
||||
apply map_strictmono
|
||||
apply hl.2
|
||||
exact hb
|
||||
. simp
|
||||
|
||||
lemma ne_bot_iff_exists' (n : WithBot ℕ∞) : n ≠ ⊥ ↔ ∃ m : ℕ∞, n = m := by
|
||||
convert WithBot.ne_bot_iff_exists using 3
|
||||
|
@ -204,4 +331,4 @@ lemma comap_chain {l : List (PrimeSpectrum (R ⧸ I))} (hl : l.Chain' (· < ·))
|
|||
|
||||
lemma dim_quotient_le_dim : krullDim (R ⧸ I) ≤ krullDim R := by
|
||||
|
||||
end Quotient
|
||||
end Quotient
|
||||
|
|
Loading…
Reference in a new issue