From 804fd57037abd5312178ec102b7e2e63fb7efd4e Mon Sep 17 00:00:00 2001 From: chelseaandmadrid <53058005+chelseaandmadrid@users.noreply.github.com> Date: Wed, 14 Jun 2023 21:53:35 -0700 Subject: [PATCH] a little standard graded --- HilbertFunction.lean | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/HilbertFunction.lean b/HilbertFunction.lean index ce68f8c..fccd2e4 100644 --- a/HilbertFunction.lean +++ b/HilbertFunction.lean @@ -109,7 +109,7 @@ instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GComm -class StandardGraded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where +class StandardGraded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where gen_in_first_piece : Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i)) @@ -188,10 +188,11 @@ lemma Associated_prime_of_graded_is_graded -- If M is a finite graed R-Mod of dimension d ≥ 1, then the Hilbert function H(M, n) is of polynomial type (d - 1) theorem Hilbert_polynomial_d_ge_1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] -[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) +[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : ℤ → ℤ) (Hhilb: hilbert_function 𝒜 𝓜 hilb) + : PolyType hilb (d - 1) := by sorry