mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge branch 'main' of github.com:GTBarkley/comm_alg into main
This commit is contained in:
commit
7da199c95b
3 changed files with 78 additions and 28 deletions
|
@ -52,10 +52,10 @@ open Ideal
|
|||
-- chain of primes
|
||||
#check height
|
||||
|
||||
-- lemma height_ge_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
-- height 𝔭 ≥ n ↔ := sorry
|
||||
lemma lt_height_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := sorry
|
||||
|
||||
lemma height_ge_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
rcases n with _ | n
|
||||
. constructor <;> intro h <;> exfalso
|
||||
|
@ -88,13 +88,38 @@ lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krull
|
|||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||
use k
|
||||
|
||||
lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||
Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
|
||||
sorry
|
||||
-- lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||
-- Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
|
||||
-- sorry
|
||||
|
||||
lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||
Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
|
||||
-- lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||
-- Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
|
||||
|
||||
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||||
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||
|
||||
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||
constructor
|
||||
. contrapose
|
||||
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
||||
apply PrimeSpectrum.instNonemptyPrimeSpectrum
|
||||
. intro h
|
||||
by_contra hneg
|
||||
rw [not_isEmpty_iff] at hneg
|
||||
rcases hneg with ⟨a, ha⟩
|
||||
exact primeSpectrum_empty_of_subsingleton R ⟨a, ha⟩
|
||||
|
||||
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
|
||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||
unfold Ideal.krullDim
|
||||
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
||||
constructor <;> intro h
|
||||
. rw [←not_nonempty_iff]
|
||||
rintro ⟨a, ha⟩
|
||||
-- specialize h ⟨a, ha⟩
|
||||
tauto
|
||||
. rw [h.forall_iff]
|
||||
trivial
|
||||
|
||||
|
||||
#check (sorry : False)
|
||||
|
|
|
@ -68,7 +68,31 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
|
|||
#check height_le_krullDim
|
||||
--some propositions that would be nice to be able to eventually
|
||||
|
||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := sorry
|
||||
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||||
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||
|
||||
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||
constructor
|
||||
. contrapose
|
||||
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
||||
apply PrimeSpectrum.instNonemptyPrimeSpectrum
|
||||
. intro h
|
||||
by_contra hneg
|
||||
rw [not_isEmpty_iff] at hneg
|
||||
rcases hneg with ⟨a, ha⟩
|
||||
exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩
|
||||
|
||||
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
|
||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||
unfold Ideal.krullDim
|
||||
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
||||
constructor <;> intro h
|
||||
. rw [←not_nonempty_iff]
|
||||
rintro ⟨a, ha⟩
|
||||
specialize h ⟨a, ha⟩
|
||||
tauto
|
||||
. rw [h.forall_iff]
|
||||
trivial
|
||||
|
||||
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry
|
||||
|
||||
|
|
|
@ -9,11 +9,6 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|||
|
||||
namespace Ideal
|
||||
|
||||
example (x : Nat) : List.Chain' (· < ·) [x] := by
|
||||
constructor
|
||||
|
||||
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
@ -52,30 +47,36 @@ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
|||
unfold krullDim
|
||||
simp [field_prime_height_zero]
|
||||
|
||||
noncomputable
|
||||
instance : CompleteLattice (WithBot ℕ∞) :=
|
||||
inferInstanceAs <| CompleteLattice (WithBot (WithTop ℕ))
|
||||
|
||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||
unfold krullDim at h
|
||||
simp [height] at h
|
||||
by_contra x
|
||||
rw [Ring.not_isField_iff_exists_prime] at x
|
||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||
have PgtBot : P > ⊥ := Ne.bot_lt h1
|
||||
have pos_height : ↑(Set.chainHeight {J | J < P}) > 0 := by
|
||||
have : ⊥ ∈ {J | J < P} := PgtBot
|
||||
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
|
||||
-- have : {J | J < P} ≠ ∅ := Set.Nonempty.ne_empty this
|
||||
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
|
||||
have h2 : P' ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
|
||||
contradiction
|
||||
have PgtBot : P' > ⊥ := Ne.bot_lt h2
|
||||
have pos_height : ¬ ↑(Set.chainHeight {J | J < P'}) ≤ 0 := by
|
||||
have : ⊥ ∈ {J | J < P'} := PgtBot
|
||||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||
rw [←Set.one_le_chainHeight_iff] at this
|
||||
exact Iff.mp ENat.one_le_iff_pos this
|
||||
have zero_height : ↑(Set.chainHeight {J | J < P}) = 0 := by
|
||||
-- Probably need to use Sup_le or something here
|
||||
sorry
|
||||
have : ↑(Set.chainHeight {J | J < P}) ≠ 0 := Iff.mp pos_iff_ne_zero pos_height
|
||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||
have zero_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
|
||||
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
|
||||
rw [iSup_le_iff] at this
|
||||
exact Iff.mp WithBot.coe_le_zero (this P')
|
||||
contradiction
|
||||
|
||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||
constructor
|
||||
· exact isField.dim_zero
|
||||
· intro fieldD
|
||||
have : Field D := IsField.toField fieldD
|
||||
-- Not exactly sure why this is failing
|
||||
-- apply @dim_field_eq_zero D _
|
||||
sorry
|
||||
let h : Field D := IsField.toField fieldD
|
||||
exact dim_field_eq_zero
|
Loading…
Reference in a new issue