diff --git a/CommAlg/final_hil_pol.lean b/CommAlg/final_hil_pol.lean index 7176de2..e3c141e 100644 --- a/CommAlg/final_hil_pol.lean +++ b/CommAlg/final_hil_pol.lean @@ -108,7 +108,6 @@ instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GComm sorry) - class StandardGraded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where gen_in_first_piece : Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i)) @@ -123,7 +122,27 @@ def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _) def graded_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)] -[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) : ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by sorry +[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] +(f : (⨁ i, 𝓜 i) →ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i)) +: ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) +∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by + sorry + +#check graded_morphism + +def graded_isomorphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _) +[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)] +[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] +(f : (⨁ i, 𝓜 i) →ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i)) +(hf : graded_morphism (fun i => (𝒜 i)) (fun i => (𝓜 i)) (fun i => (𝓝 i)) f) +: (f : (⨁ i, 𝓜 i) ≃ₗ[(⨁ i, 𝒜 i)] (⨁ i, 𝓝 i)) := by + sorry + + +-- (⊕ i, 𝒜 i) (⨁ i, 𝓜 i) (⊕ i, 𝓝 i) + +#check graded_isomorphism + def graded_submodule @@ -142,6 +161,7 @@ end + -- @Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component instance Quotient_of_graded_is_graded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] @@ -149,6 +169,13 @@ instance Quotient_of_graded_is_graded : DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by sorry +-- +lemma sss + : true := by + sorry + + + -- If A_0 is Artinian and local, then A is graded local lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) @@ -255,5 +282,8 @@ theorem Hilbert_polynomial_d_0_reduced + + +