mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Trying to break it down to smaller parts
This commit is contained in:
parent
c64025b1b4
commit
70007679cd
1 changed files with 10 additions and 0 deletions
|
@ -3,9 +3,11 @@ import Mathlib.Order.Height
|
||||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
import Mathlib.RingTheory.Ideal.Quotient
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
|
import Mathlib.RingTheory.Ideal.MinimalPrime
|
||||||
import Mathlib.RingTheory.Localization.AtPrime
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
import Mathlib.Data.Set.Ncard
|
||||||
|
|
||||||
namespace Ideal
|
namespace Ideal
|
||||||
|
|
||||||
|
@ -24,6 +26,13 @@ lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||||
|
|
||||||
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
|
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
|
||||||
|
|
||||||
|
lemma primeIdeal_finite_height_of_noetherianRing [Nontrivial R] [IsNoetherianRing R] (P: PrimeSpectrum R) : height P ≠ ⊤ := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
lemma exist_elts_MinimalOver_of_primeIdeal_of_noetherianRing [Nontrivial R] [IsNoetherianRing R] (P: PrimeSpectrum R) :
|
||||||
|
∃S : Set R, Set.ncard s = height P ∧ P.asIdeal ∈ Ideal.minimalPrimes (Ideal.span S) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
krullDim R + 1 = krullDim (Polynomial R) := by
|
krullDim R + 1 = krullDim (Polynomial R) := by
|
||||||
rw [le_antisymm_iff]
|
rw [le_antisymm_iff]
|
||||||
|
@ -43,6 +52,7 @@ lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
have : height P ≤ height P' := height_le_of_le PleP'
|
have : height P ≤ height P' := height_le_of_le PleP'
|
||||||
simp only [WithBot.coe_le_coe]
|
simp only [WithBot.coe_le_coe]
|
||||||
have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by
|
have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by
|
||||||
|
-- Prime avoidance is called subset_union_prime
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
obtain ⟨I, h⟩ := this
|
obtain ⟨I, h⟩ := this
|
||||||
|
|
Loading…
Reference in a new issue