mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
new: Made some progress on the other side of dim_eq_zero_iff_field
This commit is contained in:
parent
dff6fb21d3
commit
6bbeb7e36d
1 changed files with 21 additions and 7 deletions
|
@ -6,9 +6,7 @@ import Mathlib.RingTheory.Ideal.Quotient
|
|||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
-- import Mathlib.Data.ENat.Lattice
|
||||
-- import Mathlib.Order.OrderIsoNat
|
||||
-- import Mathlib.Tactic.TFAE
|
||||
|
||||
namespace Ideal
|
||||
|
||||
example (x : Nat) : List.Chain' (· < ·) [x] := by
|
||||
|
@ -17,9 +15,7 @@ example (x : Nat) : List.Chain' (· < ·) [x] := by
|
|||
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
|
||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||
|
@ -48,10 +44,28 @@ lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : heig
|
|||
have J0 : IsPrime J.asIdeal := J.IsPrime
|
||||
rw [field_prime_bot] at P0 J0
|
||||
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
||||
have JeqP : J = P := PrimeSpectrum.ext J P this
|
||||
have JneqP : J ≠ P := ne_of_lt JlP
|
||||
have : J = P := PrimeSpectrum.ext J P this
|
||||
have : J ≠ P := ne_of_lt JlP
|
||||
contradiction
|
||||
|
||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||
unfold krullDim
|
||||
simp [field_prime_height_zero]
|
||||
|
||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||
unfold krullDim at h
|
||||
simp [height] at h
|
||||
by_contra x
|
||||
rw [Ring.not_isField_iff_exists_prime] at x
|
||||
obtain ⟨P, ⟨h, primeP⟩⟩ := x
|
||||
have PgtBot : P > ⊥ := Ne.bot_lt h
|
||||
sorry
|
||||
|
||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||
constructor
|
||||
· exact isField.dim_zero
|
||||
· intro fieldD
|
||||
have : Field D := IsField.toField fieldD
|
||||
-- Not exactly sure why this is failing
|
||||
-- apply @dim_field_eq_zero D _
|
||||
sorry
|
||||
|
|
Loading…
Reference in a new issue