mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
found a bunch of good finite-type algebra lemmas
This commit is contained in:
parent
d9f67a1075
commit
6b46181b72
1 changed files with 6 additions and 0 deletions
|
@ -7,6 +7,7 @@ useful lemmas and definitions
|
|||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.RingTheory.FiniteType
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.MvPolynomial.Basic
|
||||
import Mathlib.RingTheory.Ideal.Over
|
||||
|
@ -59,6 +60,11 @@ variable (I : Ideal R)
|
|||
--Theorems relating primes of a ring to primes of a quotient
|
||||
#check PrimeSpectrum.range_comap_of_surjective
|
||||
|
||||
--There's a lot of theorems about finite-type algebras
|
||||
#check Algebra.FiniteType.polynomial
|
||||
#check Algebra.FiniteType.mvPolynomial
|
||||
#check Algebra.FiniteType.of_surjective
|
||||
|
||||
-- There is a notion of short exact sequences but the number of theorems are lacking
|
||||
-- For example, I couldn't find anything saying that for a ses 0 -> A -> B -> C -> 0
|
||||
-- of R-modules, A and C being FG implies that B is FG
|
||||
|
|
Loading…
Reference in a new issue