mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
commit
6a089d1356
2 changed files with 11 additions and 3 deletions
|
@ -1,4 +1,5 @@
|
|||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.RingTheory.FiniteType
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
|
@ -33,11 +34,12 @@ noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.c
|
|||
|
||||
lemma krullDim_le_iff (R : Type) [CommRing R] (n : ℕ) :
|
||||
iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) ≤ n ↔
|
||||
∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := by
|
||||
convert @iSup_le_iff (WithBot ℕ∞) (PrimeSpectrum R) inferInstance _ (↑n)
|
||||
∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||
|
||||
--some propositions that would be nice to be able to eventually
|
||||
|
||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := sorry
|
||||
|
||||
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry
|
||||
|
||||
#check Ring.DimensionLEOne
|
||||
|
|
|
@ -7,6 +7,7 @@ useful lemmas and definitions
|
|||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.RingTheory.FiniteType
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.MvPolynomial.Basic
|
||||
import Mathlib.RingTheory.Ideal.Over
|
||||
|
@ -59,6 +60,11 @@ variable (I : Ideal R)
|
|||
--Theorems relating primes of a ring to primes of a quotient
|
||||
#check PrimeSpectrum.range_comap_of_surjective
|
||||
|
||||
--There's a lot of theorems about finite-type algebras
|
||||
#check Algebra.FiniteType.polynomial
|
||||
#check Algebra.FiniteType.mvPolynomial
|
||||
#check Algebra.FiniteType.of_surjective
|
||||
|
||||
-- There is a notion of short exact sequences but the number of theorems are lacking
|
||||
-- For example, I couldn't find anything saying that for a ses 0 -> A -> B -> C -> 0
|
||||
-- of R-modules, A and C being FG implies that B is FG
|
||||
|
|
Loading…
Reference in a new issue