Merge pull request #90 from SinTan1729/main

Completed polynomial_over_field_dim_one and move to main file
This commit is contained in:
Sayantan Santra 2023-06-16 13:15:38 -05:00 committed by GitHub
commit 65d6e05f08
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 43 additions and 24 deletions

View file

@ -61,7 +61,7 @@ lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
@[simp]
lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
constructor
· intro h
unfold height at h
@ -85,6 +85,10 @@ lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] {P : PrimeSpectrum
have := not_lt_of_lt JneP
contradiction
@[simp]
lemma height_bot_eq {D: Type _} [CommRing D] [IsDomain D] : height (⊥ : PrimeSpectrum D) = ⊥ := by
rw [height_bot_iff_bot]
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
ideal of height ≥ n. -/
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ) :
@ -300,27 +304,11 @@ lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P =
exact bot_prime
/-- In a field, all primes have height 0. -/
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] {P : PrimeSpectrum K} : height P = ⊥ := by
-- This should be doable by
-- have : IsPrime P.asIdeal := P.IsPrime
-- rw [field_prime_bot] at this
-- have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
-- rw [height_bot_iff_bot]
-- Need to check what's happening
rw [bot_eq_zero]
unfold height
simp only [Set.chainHeight_eq_zero_iff]
by_contra spec
change _ ≠ _ at spec
rw [← Set.nonempty_iff_ne_empty] at spec
obtain ⟨J, JlP : J < P⟩ := spec
have P0 : IsPrime P.asIdeal := P.IsPrime
have J0 : IsPrime J.asIdeal := J.IsPrime
rw [field_prime_bot] at P0 J0
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
have : J = P := PrimeSpectrum.ext J P this
have : J ≠ P := ne_of_lt JlP
contradiction
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by
have : IsPrime P.asIdeal := P.IsPrime
rw [field_prime_bot] at this
have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
rwa [height_bot_iff_bot]
/-- The Krull dimension of a field is 0. -/
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
@ -386,6 +374,37 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
rw [dim_le_one_iff]
exact Ring.DimensionLEOne.principal_ideal_ring R
/-- The ring of polynomials over a field has dimension one. -/
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
rw [le_antisymm_iff]
let X := @Polynomial.X K _
constructor
· exact dim_le_one_of_pid
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
· obtain ⟨I, h⟩ := this
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
apply @le_iSup (WithBot ℕ∞) _ _ _ I
exact le_trans h this
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
have : IsPrime (span {X}) := by
refine (span_singleton_prime ?hp).mpr primeX
exact Polynomial.X_ne_zero
let P := PrimeSpectrum.mk (span {X}) this
unfold height
use P
have : ⊥ ∈ {J | J < P} := by
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
suffices : P.asIdeal ≠ ⊥
· by_contra x
rw [PrimeSpectrum.ext_iff] at x
contradiction
by_contra x
simp only [span_singleton_eq_bot] at x
have := @Polynomial.X_ne_zero K _ _
contradiction
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry

View file

@ -7,7 +7,7 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
namespace Ideal
private lemma singleton_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by
private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by
unfold Set.chainHeight
simp only [iSup_le_iff, Nat.cast_le_one]
intro L h
@ -67,7 +67,7 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD
unfold height
rw [sngletn]
simp only [WithBot.coe_le_one, ge_iff_le]
exact singleton_chainHeight_one
exact singleton_bot_chainHeight_one
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
· obtain ⟨I, h⟩ := this
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by