mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Merge pull request #90 from SinTan1729/main
Completed polynomial_over_field_dim_one and move to main file
This commit is contained in:
commit
65d6e05f08
2 changed files with 43 additions and 24 deletions
|
@ -61,7 +61,7 @@ lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||||
|
|
||||||
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
||||||
@[simp]
|
@[simp]
|
||||||
lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
|
lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
|
||||||
constructor
|
constructor
|
||||||
· intro h
|
· intro h
|
||||||
unfold height at h
|
unfold height at h
|
||||||
|
@ -85,6 +85,10 @@ lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] {P : PrimeSpectrum
|
||||||
have := not_lt_of_lt JneP
|
have := not_lt_of_lt JneP
|
||||||
contradiction
|
contradiction
|
||||||
|
|
||||||
|
@[simp]
|
||||||
|
lemma height_bot_eq {D: Type _} [CommRing D] [IsDomain D] : height (⊥ : PrimeSpectrum D) = ⊥ := by
|
||||||
|
rw [height_bot_iff_bot]
|
||||||
|
|
||||||
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
||||||
ideal of height ≥ n. -/
|
ideal of height ≥ n. -/
|
||||||
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||||
|
@ -300,27 +304,11 @@ lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P =
|
||||||
exact bot_prime
|
exact bot_prime
|
||||||
|
|
||||||
/-- In a field, all primes have height 0. -/
|
/-- In a field, all primes have height 0. -/
|
||||||
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] {P : PrimeSpectrum K} : height P = ⊥ := by
|
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by
|
||||||
-- This should be doable by
|
have : IsPrime P.asIdeal := P.IsPrime
|
||||||
-- have : IsPrime P.asIdeal := P.IsPrime
|
rw [field_prime_bot] at this
|
||||||
-- rw [field_prime_bot] at this
|
have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
||||||
-- have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
rwa [height_bot_iff_bot]
|
||||||
-- rw [height_bot_iff_bot]
|
|
||||||
-- Need to check what's happening
|
|
||||||
rw [bot_eq_zero]
|
|
||||||
unfold height
|
|
||||||
simp only [Set.chainHeight_eq_zero_iff]
|
|
||||||
by_contra spec
|
|
||||||
change _ ≠ _ at spec
|
|
||||||
rw [← Set.nonempty_iff_ne_empty] at spec
|
|
||||||
obtain ⟨J, JlP : J < P⟩ := spec
|
|
||||||
have P0 : IsPrime P.asIdeal := P.IsPrime
|
|
||||||
have J0 : IsPrime J.asIdeal := J.IsPrime
|
|
||||||
rw [field_prime_bot] at P0 J0
|
|
||||||
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
|
||||||
have : J = P := PrimeSpectrum.ext J P this
|
|
||||||
have : J ≠ P := ne_of_lt JlP
|
|
||||||
contradiction
|
|
||||||
|
|
||||||
/-- The Krull dimension of a field is 0. -/
|
/-- The Krull dimension of a field is 0. -/
|
||||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
|
@ -386,6 +374,37 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
||||||
rw [dim_le_one_iff]
|
rw [dim_le_one_iff]
|
||||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||||
|
|
||||||
|
/-- The ring of polynomials over a field has dimension one. -/
|
||||||
|
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||||
|
rw [le_antisymm_iff]
|
||||||
|
let X := @Polynomial.X K _
|
||||||
|
constructor
|
||||||
|
· exact dim_le_one_of_pid
|
||||||
|
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||||
|
· obtain ⟨I, h⟩ := this
|
||||||
|
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||||
|
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||||
|
exact le_trans h this
|
||||||
|
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
||||||
|
have : IsPrime (span {X}) := by
|
||||||
|
refine (span_singleton_prime ?hp).mpr primeX
|
||||||
|
exact Polynomial.X_ne_zero
|
||||||
|
let P := PrimeSpectrum.mk (span {X}) this
|
||||||
|
unfold height
|
||||||
|
use P
|
||||||
|
have : ⊥ ∈ {J | J < P} := by
|
||||||
|
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
|
||||||
|
suffices : P.asIdeal ≠ ⊥
|
||||||
|
· by_contra x
|
||||||
|
rw [PrimeSpectrum.ext_iff] at x
|
||||||
|
contradiction
|
||||||
|
by_contra x
|
||||||
|
simp only [span_singleton_eq_bot] at x
|
||||||
|
have := @Polynomial.X_ne_zero K _ _
|
||||||
|
contradiction
|
||||||
|
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
|
||||||
|
rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this
|
||||||
|
|
||||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry
|
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry
|
||||||
|
|
||||||
|
|
|
@ -7,7 +7,7 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
|
||||||
namespace Ideal
|
namespace Ideal
|
||||||
|
|
||||||
private lemma singleton_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by
|
private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by
|
||||||
unfold Set.chainHeight
|
unfold Set.chainHeight
|
||||||
simp only [iSup_le_iff, Nat.cast_le_one]
|
simp only [iSup_le_iff, Nat.cast_le_one]
|
||||||
intro L h
|
intro L h
|
||||||
|
@ -67,7 +67,7 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD
|
||||||
unfold height
|
unfold height
|
||||||
rw [sngletn]
|
rw [sngletn]
|
||||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||||
exact singleton_chainHeight_one
|
exact singleton_bot_chainHeight_one
|
||||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||||
· obtain ⟨I, h⟩ := this
|
· obtain ⟨I, h⟩ := this
|
||||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||||
|
|
Loading…
Reference in a new issue