mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
change PolyType
This commit is contained in:
parent
41105f8623
commit
61a7ae54bf
1 changed files with 39 additions and 12 deletions
|
@ -70,7 +70,7 @@ end section
|
||||||
noncomputable section
|
noncomputable section
|
||||||
-- Polynomial type of degree d
|
-- Polynomial type of degree d
|
||||||
@[simp]
|
@[simp]
|
||||||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), (N ≤ n → f n = Polynomial.eval (n : ℚ) Poly) ∧ d = Polynomial.degree Poly
|
||||||
section
|
section
|
||||||
-- structure PolyType (f : ℤ → ℤ) where
|
-- structure PolyType (f : ℤ → ℤ) where
|
||||||
-- Poly : Polynomial ℤ
|
-- Poly : Polynomial ℤ
|
||||||
|
@ -109,7 +109,7 @@ end section
|
||||||
|
|
||||||
-- (NO NEED TO PROVE) Constant polynomial function = constant function
|
-- (NO NEED TO PROVE) Constant polynomial function = constant function
|
||||||
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||||
(F = Polynomial.C c) ↔ (∀ r : ℚ, (Polynomial.eval r F) = c) := by
|
(F = Polynomial.C (c : ℚ)) ↔ (∀ r : ℚ, (Polynomial.eval r F) = (c : ℚ)) := by
|
||||||
constructor
|
constructor
|
||||||
· intro h
|
· intro h
|
||||||
rintro r
|
rintro r
|
||||||
|
@ -134,13 +134,13 @@ lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s :
|
||||||
|
|
||||||
-- set_option pp.all true in
|
-- set_option pp.all true in
|
||||||
-- PolyType 0 = constant function
|
-- PolyType 0 = constant function
|
||||||
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), (N ≤ n → f n = c) ∧ c ≠ 0) := by
|
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), (N ≤ n → f n = c) ∧ (c ≠ 0)) := by
|
||||||
constructor
|
constructor
|
||||||
· intro h
|
· intro h
|
||||||
rcases h with ⟨Poly, hN⟩
|
rcases h with ⟨Poly, hN⟩
|
||||||
rcases hN with ⟨N, hh⟩
|
rcases hN with ⟨N, hh⟩
|
||||||
have H1 := λ n hn => (hh n hn).left
|
have H1 := λ n=> (hh n).left
|
||||||
have H2 := λ n hn => (hh n hn).right
|
have H2 := λ n=> (hh n).right
|
||||||
clear hh
|
clear hh
|
||||||
specialize H2 (N + 1)
|
specialize H2 (N + 1)
|
||||||
have this1 : Polynomial.degree Poly = 0 := by
|
have this1 : Polynomial.degree Poly = 0 := by
|
||||||
|
@ -182,11 +182,10 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
--
|
--
|
||||||
|
|
||||||
· intro c0
|
· intro c0
|
||||||
have H7 := H2 (by norm_num)
|
-- have H7 := H2 (by norm_num)
|
||||||
rw [hthis2] at this1
|
rw [hthis2] at this1
|
||||||
rw [c0] at this1
|
rw [c0] at this1
|
||||||
simp at this1
|
simp at this1
|
||||||
--
|
|
||||||
|
|
||||||
|
|
||||||
· intro h
|
· intro h
|
||||||
|
@ -194,17 +193,45 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
let (Poly : Polynomial ℚ) := Polynomial.C (c : ℚ)
|
let (Poly : Polynomial ℚ) := Polynomial.C (c : ℚ)
|
||||||
use Poly
|
use Poly
|
||||||
use N
|
use N
|
||||||
intro n Nn
|
intro n
|
||||||
specialize aaa n
|
specialize aaa n
|
||||||
have this1 : c ≠ 0 → f n = c := by
|
have this1 : c ≠ 0 → f n = c := by
|
||||||
tauto
|
tauto
|
||||||
|
rcases aaa with ⟨A, B⟩
|
||||||
|
have this1 : f n = c := by
|
||||||
|
tauto
|
||||||
constructor
|
constructor
|
||||||
· sorry
|
clear A
|
||||||
· sorry
|
· have this2 : ∀ (t : ℚ), (Polynomial.eval t Poly) = (c : ℚ) := by
|
||||||
|
rw [← Poly_constant Poly (c : ℚ)]
|
||||||
|
sorry
|
||||||
|
specialize this2 n
|
||||||
|
rw [this2]
|
||||||
|
tauto
|
||||||
|
· sorry
|
||||||
-- apply Polynomial.degree_C c
|
-- apply Polynomial.degree_C c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- constructor
|
||||||
|
-- · intro n Nn
|
||||||
|
-- specialize aaa n
|
||||||
|
-- have this1 : c ≠ 0 → f n = c := by
|
||||||
|
-- tauto
|
||||||
|
-- rcases aaa with ⟨A, B⟩
|
||||||
|
-- have this1 : f n = c := by
|
||||||
|
-- tauto
|
||||||
|
-- clear A
|
||||||
|
-- have this2 : ∀ (t : ℚ), (Polynomial.eval t Poly) = (c : ℚ) := by
|
||||||
|
-- rw [← Poly_constant Poly (c : ℚ)]
|
||||||
|
-- sorry
|
||||||
|
-- specialize this2 n
|
||||||
|
-- rw [this2]
|
||||||
|
-- tauto
|
||||||
|
-- · sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -217,8 +244,8 @@ lemma Δ_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d →
|
||||||
intro h
|
intro h
|
||||||
rcases h with ⟨Poly, hN⟩
|
rcases h with ⟨Poly, hN⟩
|
||||||
rcases hN with ⟨N, hh⟩
|
rcases hN with ⟨N, hh⟩
|
||||||
have H1 := λ n hn => (hh n hn).left
|
have H1 := λ n => (hh n).left
|
||||||
have H2 := λ n hn => (hh n hn).right
|
have H2 := λ n => (hh n).right
|
||||||
clear hh
|
clear hh
|
||||||
have HH2 : d = Polynomial.degree Poly := by
|
have HH2 : d = Polynomial.degree Poly := by
|
||||||
sorry
|
sorry
|
||||||
|
|
Loading…
Reference in a new issue