mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
Merge pull request #53 from SinTan1729/main
Some refactoring and minor renaming of lemmas
This commit is contained in:
commit
5db8e9cc6f
2 changed files with 22 additions and 12 deletions
|
@ -63,7 +63,7 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
|
||||||
apply height_le_of_le
|
apply height_le_of_le
|
||||||
apply le_maximalIdeal
|
apply le_maximalIdeal
|
||||||
exact I.2.1
|
exact I.2.1
|
||||||
. simp
|
. simp only [height_le_krullDim]
|
||||||
|
|
||||||
#check height_le_krullDim
|
#check height_le_krullDim
|
||||||
--some propositions that would be nice to be able to eventually
|
--some propositions that would be nice to be able to eventually
|
||||||
|
@ -135,7 +135,7 @@ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
unfold krullDim
|
unfold krullDim
|
||||||
simp [field_prime_height_zero]
|
simp [field_prime_height_zero]
|
||||||
|
|
||||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
by_contra x
|
by_contra x
|
||||||
rw [Ring.not_isField_iff_exists_prime] at x
|
rw [Ring.not_isField_iff_exists_prime] at x
|
||||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||||
|
@ -156,9 +156,9 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
|
||||||
aesop
|
aesop
|
||||||
contradiction
|
contradiction
|
||||||
|
|
||||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||||
constructor
|
constructor
|
||||||
· exact isField.dim_zero
|
· exact domain_dim_zero.isField
|
||||||
· intro fieldD
|
· intro fieldD
|
||||||
let h : Field D := IsField.toField fieldD
|
let h : Field D := IsField.toField fieldD
|
||||||
exact dim_field_eq_zero
|
exact dim_field_eq_zero
|
||||||
|
|
|
@ -22,11 +22,7 @@ noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.c
|
||||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||||||
|
|
||||||
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
|
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
|
||||||
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
|
|
||||||
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
|
|
||||||
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
|
|
||||||
-- simp
|
|
||||||
|
|
||||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
krullDim R + 1 = krullDim (Polynomial R) := by
|
krullDim R + 1 = krullDim (Polynomial R) := by
|
||||||
|
@ -37,16 +33,30 @@ lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||||||
intro P
|
intro P
|
||||||
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
|
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
|
||||||
|
have : ∃ M, Ideal.IsMaximal M ∧ P.asIdeal ≤ M := by
|
||||||
|
apply exists_le_maximal
|
||||||
|
apply IsPrime.ne_top
|
||||||
|
apply P.IsPrime
|
||||||
|
obtain ⟨M, maxM, PleM⟩ := this
|
||||||
|
let P' : PrimeSpectrum (Polynomial R) := PrimeSpectrum.mk M (IsMaximal.isPrime maxM)
|
||||||
|
have PleP' : P ≤ P' := PleM
|
||||||
|
have : height P ≤ height P' := height_le_of_le PleP'
|
||||||
|
simp only [WithBot.coe_le_coe]
|
||||||
|
have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
obtain ⟨I, h⟩ := this
|
||||||
|
use I
|
||||||
|
exact ge_trans h this
|
||||||
obtain ⟨I, IP⟩ := this
|
obtain ⟨I, IP⟩ := this
|
||||||
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
|
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
|
||||||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||||
apply ge_trans this IP
|
exact ge_trans this IP
|
||||||
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
||||||
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
||||||
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
|
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
|
||||||
apply iSup_le
|
apply iSup_le
|
||||||
apply this
|
apply this
|
||||||
simp
|
simp only [iSup_le_iff]
|
||||||
intro P
|
intro P
|
||||||
exact ge_trans oneOut (htPBdd P)
|
exact ge_trans oneOut (htPBdd P)
|
||||||
|
|
Loading…
Reference in a new issue