Merge pull request #53 from SinTan1729/main

Some refactoring and minor renaming of lemmas
This commit is contained in:
Sayantan Santra 2023-06-14 13:49:06 -05:00 committed by GitHub
commit 5db8e9cc6f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 22 additions and 12 deletions

View file

@ -63,7 +63,7 @@ lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) :=
apply height_le_of_le apply height_le_of_le
apply le_maximalIdeal apply le_maximalIdeal
exact I.2.1 exact I.2.1
. simp . simp only [height_le_krullDim]
#check height_le_krullDim #check height_le_krullDim
--some propositions that would be nice to be able to eventually --some propositions that would be nice to be able to eventually
@ -135,7 +135,7 @@ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
unfold krullDim unfold krullDim
simp [field_prime_height_zero] simp [field_prime_height_zero]
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by lemma domain_dim_zero.isField {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
by_contra x by_contra x
rw [Ring.not_isField_iff_exists_prime] at x rw [Ring.not_isField_iff_exists_prime] at x
obtain ⟨P, ⟨h1, primeP⟩⟩ := x obtain ⟨P, ⟨h1, primeP⟩⟩ := x
@ -156,9 +156,9 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
aesop aesop
contradiction contradiction
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by lemma domain_dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
constructor constructor
· exact isField.dim_zero · exact domain_dim_zero.isField
· intro fieldD · intro fieldD
let h : Field D := IsField.toField fieldD let h : Field D := IsField.toField fieldD
exact dim_field_eq_zero exact dim_field_eq_zero

View file

@ -22,11 +22,7 @@ noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.c
lemma dim_le_dim_polynomial_add_one [Nontrivial R] : lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] : lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
-- simp
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] : lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
krullDim R + 1 = krullDim (Polynomial R) := by krullDim R + 1 = krullDim (Polynomial R) := by
@ -37,16 +33,30 @@ lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
intro P intro P
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
have : ∃ M, Ideal.IsMaximal M ∧ P.asIdeal ≤ M := by
apply exists_le_maximal
apply IsPrime.ne_top
apply P.IsPrime
obtain ⟨M, maxM, PleM⟩ := this
let P' : PrimeSpectrum (Polynomial R) := PrimeSpectrum.mk M (IsMaximal.isPrime maxM)
have PleP' : P ≤ P' := PleM
have : height P ≤ height P' := height_le_of_le PleP'
simp only [WithBot.coe_le_coe]
have : ∃ (I : PrimeSpectrum R), height P' ≤ height I + 1 := by
sorry sorry
obtain ⟨I, h⟩ := this
use I
exact ge_trans h this
obtain ⟨I, IP⟩ := this obtain ⟨I, IP⟩ := this
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
apply @le_iSup (WithBot ℕ∞) _ _ _ I apply @le_iSup (WithBot ℕ∞) _ _ _ I
apply ge_trans this IP exact ge_trans this IP
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1) fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
apply iSup_le apply iSup_le
apply this apply this
simp simp only [iSup_le_iff]
intro P intro P
exact ge_trans oneOut (htPBdd P) exact ge_trans oneOut (htPBdd P)