From b8928c8d90964e6d996746a2df3bc7c0e4ab6dfc Mon Sep 17 00:00:00 2001 From: Andre Date: Thu, 15 Jun 2023 22:09:13 -0400 Subject: [PATCH] refactored PolyType_0 --- CommAlg/final_poly_type.lean | 97 ++++++------------------------------ 1 file changed, 16 insertions(+), 81 deletions(-) diff --git a/CommAlg/final_poly_type.lean b/CommAlg/final_poly_type.lean index 60df0d4..aca056a 100644 --- a/CommAlg/final_poly_type.lean +++ b/CommAlg/final_poly_type.lean @@ -136,92 +136,27 @@ lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : -- set_option pp.all true in -- PolyType 0 = constant function -lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), (N ≤ n → f n = c) ∧ (c ≠ 0)) := by +lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), + (N ≤ n → f n = c) ∧ c ≠ 0) := by constructor - · intro h - rcases h with ⟨Poly, hN⟩ - rcases hN with ⟨N, hh⟩ - rcases hh with ⟨H1, H2⟩ - -- have H1 := λ n=> (hh n).left - -- have H2 := λ n=> (hh n).right - have this1 : Polynomial.degree Poly = 0 := by - have : N ≤ N + 1 := by - norm_num - tauto + · rintro ⟨Poly, ⟨N, ⟨H1, H2⟩⟩⟩ + have this1 : Polynomial.degree Poly = 0 := by rw [← H2]; rfl have this2 : ∃ (c : ℤ), Poly = Polynomial.C (c : ℚ) := by - have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) := by - use Poly.coeff 0 - apply Polynomial.eq_C_of_degree_eq_zero - exact this1 + have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) := ⟨Poly.coeff 0, Polynomial.eq_C_of_degree_eq_zero (by rw[← H2]; rfl)⟩ cases' HH with c HHH - have HHHH : ∃ (d : ℤ), d = c := by - have H3 := (Poly_constant Poly c).mp HHH N - have H4 := H1 N (le_refl N) - rw[H3] at H4 - exact ⟨f N, H4⟩ - cases' HHHH with d H5 - use d - rw [H5] - exact HHH - rcases this2 with ⟨c, hthis2⟩ - use c - use N - intro n - specialize H1 n + have HHHH : ∃ (d : ℤ), d = c := ⟨f N, by simp [(Poly_constant Poly c).mp HHH N, H1 N (le_refl N)]⟩ + cases' HHHH with d H5; exact ⟨d, by rw[← H5] at HHH; exact HHH⟩ + rcases this2 with ⟨c, hthis2⟩ + use c; use N; intro n constructor - · intro HH1 - -- have H6 := H1 HH1 - have this3 : f n = Polynomial.eval (n : ℚ) Poly := by - tauto - have this4 : Polynomial.eval (n : ℚ) Poly = c := by - rw [hthis2] - simp - have this5 : f n = (c : ℚ) := by - rw [←this4, this3] - exact Iff.mp (Rat.coe_int_inj (f n) c) this5 - + · have this4 : Polynomial.eval (n : ℚ) Poly = c := by + rw [hthis2]; simp only [map_intCast, Polynomial.eval_int_cast] + exact fun HH1 => Iff.mp (Rat.coe_int_inj (f n) c) (by rw [←this4, H1 n HH1]) · intro c0 - -- have H7 := H2 (by norm_num) - rw [hthis2] at this1 - rw [c0] at this1 - simp at this1 - - - · intro h - rcases h with ⟨c, N, hh⟩ - let Poly := Polynomial.C (c : ℚ) - --unfold PolyType - use Poly - --simp at Poly - use N - have H1 := λ n=> (hh n).left - have H22 := λ n=> (hh n).right - have H2 : c ≠ 0 := by - exact H22 0 - have H2 : (c : ℚ) ≠ 0 := by - simp; tauto - clear H22 - constructor - · intro n Nn - specialize H1 n - have this : f n = c := by - tauto - rw [this] - have this2 : Polynomial.eval (n : ℚ) Poly = (c : ℚ) := by - have this3 : ∀ r : ℚ, (Polynomial.eval r Poly) = (c : ℚ) := (Poly_constant Poly (c : ℚ)).mp rfl - exact this3 n - exact this2.symm - - - · have this : Polynomial.degree Poly = 0 := by - simp only [map_intCast] - exact Polynomial.degree_C H2 - tauto - - - - - + simp only [hthis2, c0, Int.cast_zero, map_zero, Polynomial.degree_zero] at this1 + · rintro ⟨c, N, hh⟩ + have H2 : (c : ℚ) ≠ 0 := by simp only [ne_eq, Int.cast_eq_zero]; exact (hh 0).2 + exact ⟨Polynomial.C (c : ℚ), N, fun n Nn => by rw [(hh n).1 Nn]; exact (((Poly_constant (Polynomial.C (c : ℚ)) (c : ℚ)).mp rfl) n).symm, by rw [Polynomial.degree_C H2]; rfl⟩ -- Δ of 0 times preserve the function lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by