mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
update
This commit is contained in:
parent
1618a7cc7e
commit
5cb0f77d2f
1 changed files with 22 additions and 18 deletions
|
@ -4,15 +4,15 @@ import Mathlib.RingTheory.Noetherian
|
||||||
import Mathlib.Order.KrullDimension
|
import Mathlib.Order.KrullDimension
|
||||||
import Mathlib.RingTheory.Artinian
|
import Mathlib.RingTheory.Artinian
|
||||||
import Mathlib.RingTheory.Ideal.Quotient
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
|
import Mathlib.RingTheory.Nilpotent
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
||||||
import Mathlib.Data.Finite.Defs
|
import Mathlib.Data.Finite.Defs
|
||||||
|
|
||||||
import Mathlib.Order.Height
|
import Mathlib.Order.Height
|
||||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
import Mathlib.RingTheory.Localization.AtPrime
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
|
import Mathlib.Algebra.Ring.Pi
|
||||||
|
|
||||||
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
|
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
|
||||||
namespace Ideal
|
namespace Ideal
|
||||||
|
@ -26,21 +26,9 @@ noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I :
|
||||||
|
|
||||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||||
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by
|
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by sorry
|
||||||
|
|
||||||
|
|
||||||
variable {R : Type _} [CommRing R]
|
|
||||||
|
|
||||||
-- Repeats the definition by Monalisa
|
|
||||||
noncomputable def length : krullDim (Submodule _ _)
|
|
||||||
|
|
||||||
|
|
||||||
-- The following is Stacks Lemma 10.60.5
|
|
||||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
|
||||||
IsNoetherianRing R ∧ krull_dim R = 0 ↔ IsArtinianRing R := by
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
#check IsNoetherianRing
|
#check IsNoetherianRing
|
||||||
|
|
||||||
#check krullDim
|
#check krullDim
|
||||||
|
@ -58,7 +46,25 @@ lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R
|
||||||
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
||||||
|
|
||||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||||
lemma Jacobson_of_Artinian_is_nilpotent : Is
|
lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
||||||
|
|
||||||
|
|
||||||
|
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
||||||
|
-- if every element is nilpotent
|
||||||
|
namespace Ideal
|
||||||
|
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
||||||
|
h : ∀ x ∈ I, IsNilpotent x
|
||||||
|
|
||||||
|
end Ideal
|
||||||
|
|
||||||
|
#check Ideal.IsLocallyNilpotent
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||||||
|
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||||||
|
-- its maximal ideals. Also, all primes are maximal
|
||||||
|
|
||||||
|
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
||||||
|
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) → Localization.AtPrime R I
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -70,8 +76,6 @@ end something
|
||||||
|
|
||||||
open something
|
open something
|
||||||
|
|
||||||
-- The following is Stacks Lemma 10.53.6
|
|
||||||
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue