This commit is contained in:
poincare-duality 2023-06-12 20:03:43 -07:00
parent 1618a7cc7e
commit 5cb0f77d2f

View file

@ -4,15 +4,15 @@ import Mathlib.RingTheory.Noetherian
import Mathlib.Order.KrullDimension import Mathlib.Order.KrullDimension
import Mathlib.RingTheory.Artinian import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Nilpotent
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
import Mathlib.Data.Finite.Defs import Mathlib.Data.Finite.Defs
import Mathlib.Order.Height import Mathlib.Order.Height
import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Localization.AtPrime import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Algebra.Ring.Pi
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary -- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
namespace Ideal namespace Ideal
@ -26,21 +26,9 @@ noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I :
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0 -- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] : lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by sorry
variable {R : Type _} [CommRing R]
-- Repeats the definition by Monalisa
noncomputable def length : krullDim (Submodule _ _)
-- The following is Stacks Lemma 10.60.5
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ krull_dim R = 0 ↔ IsArtinianRing R := by
sorry
#check IsNoetherianRing #check IsNoetherianRing
#check krullDim #check krullDim
@ -58,7 +46,25 @@ lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : , length R
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent -- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
lemma Jacobson_of_Artinian_is_nilpotent : Is lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson ( : Ideal R)) := by sorry
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
-- if every element is nilpotent
namespace Ideal
class IsLocallyNilpotent (I : Ideal R) : Prop :=
h : ∀ x ∈ I, IsNilpotent x
end Ideal
#check Ideal.IsLocallyNilpotent
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
-- its maximal ideals. Also, all primes are maximal
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson ( : Ideal R)) → Localization.AtPrime R I
@ -70,8 +76,6 @@ end something
open something open something
-- The following is Stacks Lemma 10.53.6
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : , length R R ≤ n := by sorry