From 56fc9aefb2a17ffb5c2eef01de5a166bdd95444d Mon Sep 17 00:00:00 2001 From: SinTan1729 Date: Fri, 16 Jun 2023 11:12:41 -0700 Subject: [PATCH] Added polynomial_over_field_dim_one to the main file --- CommAlg/krull.lean | 63 ++++++++++++++++++++++++++++++---------------- 1 file changed, 41 insertions(+), 22 deletions(-) diff --git a/CommAlg/krull.lean b/CommAlg/krull.lean index e24aa0f..7d4a31c 100644 --- a/CommAlg/krull.lean +++ b/CommAlg/krull.lean @@ -61,7 +61,7 @@ lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R := /-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/ @[simp] -lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by +lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by constructor · intro h unfold height at h @@ -85,6 +85,10 @@ lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] {P : PrimeSpectrum have := not_lt_of_lt JneP contradiction +@[simp] +lemma height_bot_eq {D: Type _} [CommRing D] [IsDomain D] : height (⊥ : PrimeSpectrum D) = ⊥ := by + rw [height_bot_iff_bot] + /-- The Krull dimension of a ring being ≥ n is equivalent to there being an ideal of height ≥ n. -/ lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) : @@ -300,27 +304,11 @@ lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P = exact bot_prime /-- In a field, all primes have height 0. -/ -lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] {P : PrimeSpectrum K} : height P = ⊥ := by - -- This should be doable by - -- have : IsPrime P.asIdeal := P.IsPrime - -- rw [field_prime_bot] at this - -- have : P = ⊥ := PrimeSpectrum.ext P ⊥ this - -- rw [height_bot_iff_bot] - -- Need to check what's happening - rw [bot_eq_zero] - unfold height - simp only [Set.chainHeight_eq_zero_iff] - by_contra spec - change _ ≠ _ at spec - rw [← Set.nonempty_iff_ne_empty] at spec - obtain ⟨J, JlP : J < P⟩ := spec - have P0 : IsPrime P.asIdeal := P.IsPrime - have J0 : IsPrime J.asIdeal := J.IsPrime - rw [field_prime_bot] at P0 J0 - have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0) - have : J = P := PrimeSpectrum.ext J P this - have : J ≠ P := ne_of_lt JlP - contradiction +lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by + have : IsPrime P.asIdeal := P.IsPrime + rw [field_prime_bot] at this + have : P = ⊥ := PrimeSpectrum.ext P ⊥ this + rwa [height_bot_iff_bot] /-- The Krull dimension of a field is 0. -/ lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by @@ -386,6 +374,37 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 rw [dim_le_one_iff] exact Ring.DimensionLEOne.principal_ideal_ring R +/-- The ring of polynomials over a field has dimension one. -/ +lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by + rw [le_antisymm_iff] + let X := @Polynomial.X K _ + constructor + · exact dim_le_one_of_pid + · suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞) + · obtain ⟨I, h⟩ := this + have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by + apply @le_iSup (WithBot ℕ∞) _ _ _ I + exact le_trans h this + have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _ + have : IsPrime (span {X}) := by + refine (span_singleton_prime ?hp).mpr primeX + exact Polynomial.X_ne_zero + let P := PrimeSpectrum.mk (span {X}) this + unfold height + use P + have : ⊥ ∈ {J | J < P} := by + simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot] + suffices : P.asIdeal ≠ ⊥ + · by_contra x + rw [PrimeSpectrum.ext_iff] at x + contradiction + by_contra x + simp only [span_singleton_eq_bot] at x + have := @Polynomial.X_ne_zero K _ _ + contradiction + have : {J | J < P}.Nonempty := Set.nonempty_of_mem this + rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this + lemma dim_le_dim_polynomial_add_one [Nontrivial R] : krullDim R + 1 ≤ krullDim (Polynomial R) := sorry