Made some progress on dim_eq_dim_polynomial_add_one

This commit is contained in:
Sayantan Santra 2023-06-13 22:54:57 -07:00
parent 06a491b843
commit 56cefd9b53
Signed by: SinTan1729
GPG key ID: EB3E68BFBA25C85F

View file

@ -0,0 +1,46 @@
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Order.Height
import Mathlib.RingTheory.PrincipalIdealDomain
import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.Order.ConditionallyCompleteLattice.Basic
namespace Ideal
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
-- simp
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
krullDim R + 1 = krullDim (Polynomial R) := by
rw [le_antisymm_iff]
constructor
· exact dim_le_dim_polynomial_add_one
· unfold krullDim
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P: WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
intro P
unfold height
sorry
have : (⨆ (I : PrimeSpectrum R), ↑(height I) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
have : ∀ P : PrimeSpectrum R, ↑(height P) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
fun _ ↦ add_le_add_right (le_iSup height _) 1
apply iSup_le
exact this
sorry