add more stuff

This commit is contained in:
poincare-duality 2023-06-13 17:21:42 -07:00
parent 81bc507768
commit 55ea06c141

View file

@ -1,97 +1,170 @@
import Mathlib.RingTheory.Ideal.Basic import Mathlib.RingTheory.Ideal.Basic
import Mathlib.RingTheory.Ideal.Operations
import Mathlib.RingTheory.JacobsonIdeal import Mathlib.RingTheory.JacobsonIdeal
import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.Noetherian
import Mathlib.Order.KrullDimension import Mathlib.Order.KrullDimension
import Mathlib.RingTheory.Artinian import Mathlib.RingTheory.Artinian
import Mathlib.RingTheory.Ideal.Quotient import Mathlib.RingTheory.Ideal.Quotient
import Mathlib.RingTheory.Nilpotent import Mathlib.RingTheory.Nilpotent
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Noetherian
import Mathlib.Data.Finite.Defs import Mathlib.Data.Finite.Defs
import Mathlib.Order.Height import Mathlib.Order.Height
import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.DedekindDomain.Basic
import Mathlib.RingTheory.Localization.AtPrime import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Algebra.Ring.Pi import Mathlib.Algebra.Ring.Pi
import Mathlib.Topology.NoetherianSpace import Mathlib.RingTheory.Finiteness
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
namespace Ideal namespace Ideal
variable (R : Type _) [CommRing R] (I : PrimeSpectrum R) variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I} noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
-- copy ends
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by sorry
#check IsNoetherianRing
#check krullDim
-- Repeats the definition of the length of a module by Monalisa
variable (M : Type _) [AddCommMonoid M] [Module R M]
-- change the definition of length
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < }
#check length
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : , length R R ≤ n := by sorry
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson ( : Ideal R)) := by sorry
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
-- if every element is nilpotent
namespace Ideal
class IsLocallyNilpotent (I : Ideal R) : Prop :=
h : ∀ x ∈ I, IsNilpotent x
end Ideal
#check Ideal.IsLocallyNilpotent
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
-- its maximal ideals. Also, all primes are maximal
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson ( : Ideal R)) → Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
:= by sorry
-- Haven't finished this.
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by sorry
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
-- Every closed subset of a noetherian space is a finite union
-- of irreducible closed subsets.
noncomputable def krullDim (R : Type) [CommRing R] :
WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
-- Stacks Lemma 10.26.1 (Should already exists) -- Stacks Lemma 10.26.1 (Should already exists)
-- (1) The closure of a prime P is V(P) -- (1) The closure of a prime P is V(P)
-- (2) the irreducible closed subsets are V(P) for P prime -- (2) the irreducible closed subsets are V(P) for P prime
-- (3) the irreducible components are V(P) for P minimal prime -- (3) the irreducible components are V(P) for P minimal prime
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals. If J ⊂ √I, then J ^ n ⊂ I for some n -- Stacks Definition 10.32.1: An ideal is locally nilpotent
-- if every element is nilpotent
class IsLocallyNilpotent (I : Ideal R) : Prop :=
h : ∀ x ∈ I, IsNilpotent x
#check Ideal.IsLocallyNilpotent
end Ideal
-- Repeats the definition of the length of a module by Monalisa
variable (R : Type _) [CommRing R] (I J : Ideal R)
variable (M : Type _) [AddCommMonoid M] [Module R M]
-- change the definition of length of a module
namespace Module
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < }
end Module
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
example [IsNoetherianRing R] :
TopologicalSpace.NoetherianSpace (PrimeSpectrum R) :=
inferInstance
instance ring_Noetherian_of_spec_Noetherian
[TopologicalSpace.NoetherianSpace (PrimeSpectrum R)] :
IsNoetherianRing R where
noetherian := by sorry
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by
constructor
intro RisNoetherian
-- how do I apply an instance to prove one direction?
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
-- Every closed subset of a noetherian space is a finite union
-- of irreducible closed subsets.
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals.
-- If J ⊂ √I, then J ^ n ⊂ I for some n. In particular, locally nilpotent
-- and nilpotent are the same for Noetherian rings
lemma containment_radical_power_containment :
IsNoetherianRing R ∧ J ≤ Ideal.radical I → ∃ n : , J ^ n ≤ I := by
rintro ⟨RisNoetherian, containment⟩
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
specialize RisNoetherian (Ideal.radical I)
rcases RisNoetherian with ⟨S, Sgenerates⟩
-- how to I get a generating set?
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
--
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
-- M is a finite R-mod and I^nM=0. Then length of M is finite.
lemma power_zero_finite_length : Ideal.FG I → Ideal.IsMaximal I → Module.Finite R M
→ (∃ n : , (I ^ n) • ( : Submodule R M) = 0)
→ (∃ m : , Module.length R M ≤ m) := by
intro IisFG IisMaximal MisFinite power
rcases power with ⟨n, npower⟩
-- how do I get a generating set?
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
lemma IsArtinian_iff_finite_max_ideal :
IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
lemma Jacobson_of_Artinian_is_nilpotent :
IsArtinianRing R → IsNilpotent (Ideal.jacobson ( : Ideal R)) := by sorry
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
-- its maximal ideals. Also, all primes are maximal
-- lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
-- ∧
def jaydensRing : Type _ := sorry
-- ∀ I : MaximalSpectrum R, Localization.AtPrime R I
instance : CommRing jaydensRing := sorry -- this should come for free, don't even need to state it
def foo : jaydensRing ≃+* R where
toFun := _
invFun := _
left_inv := _
right_inv := _
map_mul' := _
map_add' := _
-- Ideal.IsLocallyNilpotent (Ideal.jacobson ( : Ideal R)) →
-- Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
-- := by sorry
-- Haven't finished this.
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
lemma IsArtinian_iff_finite_length :
IsArtinianRing R ↔ (∃ n : , Module.length R R ≤ n) := by sorry
-- Lemma: if R has finite length as R-mod, then R is Noetherian
lemma finite_length_is_Noetherian :
(∃ n : , Module.length R R ≤ n) → IsNoetherianRing R := by sorry
-- Lemma: if R is Artinian then all the prime ideals are maximal
lemma primes_of_Artinian_are_maximal :
IsArtinianRing R → Ideal.IsPrime I → Ideal.IsMaximal I := by sorry
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
IsNoetherianRing R ∧ Ideal.krullDim R = 0 ↔ IsArtinianRing R := by
constructor
sorry
intro RisArtinian
constructor
apply finite_length_is_Noetherian
rwa [IsArtinian_iff_finite_length] at RisArtinian
sorry
-- how to use namespace
namespace something
end something
open something