mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
add more stuff
This commit is contained in:
parent
81bc507768
commit
55ea06c141
1 changed files with 138 additions and 65 deletions
|
@ -1,97 +1,170 @@
|
||||||
import Mathlib.RingTheory.Ideal.Basic
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
import Mathlib.RingTheory.JacobsonIdeal
|
import Mathlib.RingTheory.JacobsonIdeal
|
||||||
import Mathlib.RingTheory.Noetherian
|
import Mathlib.RingTheory.Noetherian
|
||||||
import Mathlib.Order.KrullDimension
|
import Mathlib.Order.KrullDimension
|
||||||
import Mathlib.RingTheory.Artinian
|
import Mathlib.RingTheory.Artinian
|
||||||
import Mathlib.RingTheory.Ideal.Quotient
|
import Mathlib.RingTheory.Ideal.Quotient
|
||||||
import Mathlib.RingTheory.Nilpotent
|
import Mathlib.RingTheory.Nilpotent
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
||||||
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Noetherian
|
||||||
import Mathlib.Data.Finite.Defs
|
import Mathlib.Data.Finite.Defs
|
||||||
import Mathlib.Order.Height
|
import Mathlib.Order.Height
|
||||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||||
import Mathlib.RingTheory.Localization.AtPrime
|
import Mathlib.RingTheory.Localization.AtPrime
|
||||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||||
import Mathlib.Algebra.Ring.Pi
|
import Mathlib.Algebra.Ring.Pi
|
||||||
import Mathlib.Topology.NoetherianSpace
|
import Mathlib.RingTheory.Finiteness
|
||||||
|
|
||||||
|
|
||||||
-- copy from krull.lean; the name of Krull dimension for rings is changed to krullDim' since krullDim already exists in the librrary
|
|
||||||
namespace Ideal
|
namespace Ideal
|
||||||
|
|
||||||
variable (R : Type _) [CommRing R] (I : PrimeSpectrum R)
|
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
||||||
|
|
||||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
|
||||||
|
|
||||||
noncomputable def krullDim' (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
|
||||||
-- copy ends
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
|
||||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
|
||||||
IsNoetherianRing R ∧ krullDim' R = 0 ↔ IsArtinianRing R := by sorry
|
|
||||||
|
|
||||||
|
|
||||||
#check IsNoetherianRing
|
|
||||||
|
|
||||||
#check krullDim
|
|
||||||
|
|
||||||
-- Repeats the definition of the length of a module by Monalisa
|
|
||||||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
|
||||||
|
|
||||||
-- change the definition of length
|
|
||||||
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
|
||||||
|
|
||||||
#check length
|
|
||||||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
|
||||||
lemma IsArtinian_iff_finite_length : IsArtinianRing R ↔ ∃ n : ℕ, length R R ≤ n := by sorry
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
|
||||||
lemma IsArtinian_iff_finite_max_ideal : IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
|
||||||
lemma Jacobson_of_Artinian_is_nilpotent : IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
|
||||||
|
|
||||||
|
|
||||||
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
|
||||||
-- if every element is nilpotent
|
|
||||||
namespace Ideal
|
|
||||||
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
|
||||||
h : ∀ x ∈ I, IsNilpotent x
|
|
||||||
|
|
||||||
end Ideal
|
|
||||||
|
|
||||||
#check Ideal.IsLocallyNilpotent
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
|
||||||
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
|
||||||
-- its maximal ideals. Also, all primes are maximal
|
|
||||||
|
|
||||||
lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
|
||||||
∧ Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) → Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
|
||||||
:= by sorry
|
|
||||||
-- Haven't finished this.
|
|
||||||
|
|
||||||
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
|
||||||
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
|
||||||
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by sorry
|
|
||||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
|
||||||
-- Every closed subset of a noetherian space is a finite union
|
|
||||||
-- of irreducible closed subsets.
|
|
||||||
|
|
||||||
|
noncomputable def krullDim (R : Type) [CommRing R] :
|
||||||
|
WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||||||
|
|
||||||
-- Stacks Lemma 10.26.1 (Should already exists)
|
-- Stacks Lemma 10.26.1 (Should already exists)
|
||||||
-- (1) The closure of a prime P is V(P)
|
-- (1) The closure of a prime P is V(P)
|
||||||
-- (2) the irreducible closed subsets are V(P) for P prime
|
-- (2) the irreducible closed subsets are V(P) for P prime
|
||||||
-- (3) the irreducible components are V(P) for P minimal prime
|
-- (3) the irreducible components are V(P) for P minimal prime
|
||||||
|
|
||||||
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals. If J ⊂ √I, then J ^ n ⊂ I for some n
|
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
||||||
|
-- if every element is nilpotent
|
||||||
|
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
||||||
|
h : ∀ x ∈ I, IsNilpotent x
|
||||||
|
#check Ideal.IsLocallyNilpotent
|
||||||
|
end Ideal
|
||||||
|
|
||||||
|
|
||||||
|
-- Repeats the definition of the length of a module by Monalisa
|
||||||
|
variable (R : Type _) [CommRing R] (I J : Ideal R)
|
||||||
|
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||||
|
|
||||||
|
-- change the definition of length of a module
|
||||||
|
namespace Module
|
||||||
|
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||||
|
end Module
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
||||||
|
example [IsNoetherianRing R] :
|
||||||
|
TopologicalSpace.NoetherianSpace (PrimeSpectrum R) :=
|
||||||
|
inferInstance
|
||||||
|
|
||||||
|
instance ring_Noetherian_of_spec_Noetherian
|
||||||
|
[TopologicalSpace.NoetherianSpace (PrimeSpectrum R)] :
|
||||||
|
IsNoetherianRing R where
|
||||||
|
noetherian := by sorry
|
||||||
|
|
||||||
|
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
||||||
|
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by
|
||||||
|
constructor
|
||||||
|
intro RisNoetherian
|
||||||
|
-- how do I apply an instance to prove one direction?
|
||||||
|
|
||||||
|
|
||||||
|
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||||
|
-- Every closed subset of a noetherian space is a finite union
|
||||||
|
-- of irreducible closed subsets.
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals.
|
||||||
|
-- If J ⊂ √I, then J ^ n ⊂ I for some n. In particular, locally nilpotent
|
||||||
|
-- and nilpotent are the same for Noetherian rings
|
||||||
|
lemma containment_radical_power_containment :
|
||||||
|
IsNoetherianRing R ∧ J ≤ Ideal.radical I → ∃ n : ℕ, J ^ n ≤ I := by
|
||||||
|
rintro ⟨RisNoetherian, containment⟩
|
||||||
|
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
||||||
|
specialize RisNoetherian (Ideal.radical I)
|
||||||
|
rcases RisNoetherian with ⟨S, Sgenerates⟩
|
||||||
|
|
||||||
|
-- how to I get a generating set?
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
|
||||||
|
--
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
|
||||||
|
-- M is a finite R-mod and I^nM=0. Then length of M is finite.
|
||||||
|
lemma power_zero_finite_length : Ideal.FG I → Ideal.IsMaximal I → Module.Finite R M
|
||||||
|
→ (∃ n : ℕ, (I ^ n) • (⊤ : Submodule R M) = 0)
|
||||||
|
→ (∃ m : ℕ, Module.length R M ≤ m) := by
|
||||||
|
intro IisFG IisMaximal MisFinite power
|
||||||
|
rcases power with ⟨n, npower⟩
|
||||||
|
-- how do I get a generating set?
|
||||||
|
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||||||
|
lemma IsArtinian_iff_finite_max_ideal :
|
||||||
|
IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||||
|
lemma Jacobson_of_Artinian_is_nilpotent :
|
||||||
|
IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||||||
|
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||||||
|
-- its maximal ideals. Also, all primes are maximal
|
||||||
|
|
||||||
|
-- lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
||||||
|
-- ∧
|
||||||
|
|
||||||
|
def jaydensRing : Type _ := sorry
|
||||||
|
-- ∀ I : MaximalSpectrum R, Localization.AtPrime R I
|
||||||
|
|
||||||
|
instance : CommRing jaydensRing := sorry -- this should come for free, don't even need to state it
|
||||||
|
|
||||||
|
def foo : jaydensRing ≃+* R where
|
||||||
|
toFun := _
|
||||||
|
invFun := _
|
||||||
|
left_inv := _
|
||||||
|
right_inv := _
|
||||||
|
map_mul' := _
|
||||||
|
map_add' := _
|
||||||
|
-- Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) →
|
||||||
|
-- Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
||||||
|
-- := by sorry
|
||||||
|
-- Haven't finished this.
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||||
|
lemma IsArtinian_iff_finite_length :
|
||||||
|
IsArtinianRing R ↔ (∃ n : ℕ, Module.length R R ≤ n) := by sorry
|
||||||
|
|
||||||
|
-- Lemma: if R has finite length as R-mod, then R is Noetherian
|
||||||
|
lemma finite_length_is_Noetherian :
|
||||||
|
(∃ n : ℕ, Module.length R R ≤ n) → IsNoetherianRing R := by sorry
|
||||||
|
|
||||||
|
-- Lemma: if R is Artinian then all the prime ideals are maximal
|
||||||
|
lemma primes_of_Artinian_are_maximal :
|
||||||
|
IsArtinianRing R → Ideal.IsPrime I → Ideal.IsMaximal I := by sorry
|
||||||
|
|
||||||
|
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||||||
|
|
||||||
|
|
||||||
|
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||||
|
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||||
|
IsNoetherianRing R ∧ Ideal.krullDim R = 0 ↔ IsArtinianRing R := by
|
||||||
|
constructor
|
||||||
|
sorry
|
||||||
|
intro RisArtinian
|
||||||
|
constructor
|
||||||
|
apply finite_length_is_Noetherian
|
||||||
|
rwa [IsArtinian_iff_finite_length] at RisArtinian
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- how to use namespace
|
|
||||||
|
|
||||||
namespace something
|
|
||||||
|
|
||||||
end something
|
|
||||||
|
|
||||||
open something
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue