mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Added some comments
This commit is contained in:
parent
1cf31c2590
commit
54c76464bc
1 changed files with 6 additions and 2 deletions
|
@ -19,6 +19,7 @@ import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
|||
developed.
|
||||
-/
|
||||
|
||||
/-- If something is smaller that Bot of a PartialOrder after attaching another Bot, it must be Bot. -/
|
||||
lemma lt_bot_eq_WithBot_bot [PartialOrder α] [OrderBot α] {a : WithBot α} (h : a < (⊥ : α)) : a = ⊥ := by
|
||||
cases a
|
||||
. rfl
|
||||
|
@ -29,18 +30,19 @@ open LocalRing
|
|||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
|
||||
/-- Definitions -/
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
|
||||
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
noncomputable def codimension (J : Ideal R) : WithBot ℕ∞ := ⨅ I ∈ {I : PrimeSpectrum R | J ≤ I.asIdeal}, height I
|
||||
|
||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||
|
||||
/-- A lattice structure on WithBot ℕ∞. -/
|
||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||
|
||||
/-- Height of ideals is monotonic. -/
|
||||
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by
|
||||
apply Set.chainHeight_mono
|
||||
intro J' hJ'
|
||||
|
@ -57,6 +59,8 @@ lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
|||
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
||||
|
||||
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
||||
ideal of height ≥ n. -/
|
||||
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by
|
||||
constructor
|
||||
|
|
Loading…
Reference in a new issue