add more stuff

This commit is contained in:
poincare-duality 2023-06-14 13:09:23 -07:00
parent b832cecf59
commit 5485c26849

View file

@ -15,6 +15,9 @@ import Mathlib.RingTheory.Localization.AtPrime
import Mathlib.Order.ConditionallyCompleteLattice.Basic import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Algebra.Ring.Pi import Mathlib.Algebra.Ring.Pi
import Mathlib.RingTheory.Finiteness import Mathlib.RingTheory.Finiteness
import Mathlib.Util.PiNotation
open PiNotation
namespace Ideal namespace Ideal
@ -26,6 +29,8 @@ noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J <
noncomputable def krullDim (R : Type) [CommRing R] : noncomputable def krullDim (R : Type) [CommRing R] :
WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
--variable {R}
-- Stacks Lemma 10.26.1 (Should already exists) -- Stacks Lemma 10.26.1 (Should already exists)
-- (1) The closure of a prime P is V(P) -- (1) The closure of a prime P is V(P)
-- (2) the irreducible closed subsets are V(P) for P prime -- (2) the irreducible closed subsets are V(P) for P prime
@ -33,7 +38,7 @@ noncomputable def krullDim (R : Type) [CommRing R] :
-- Stacks Definition 10.32.1: An ideal is locally nilpotent -- Stacks Definition 10.32.1: An ideal is locally nilpotent
-- if every element is nilpotent -- if every element is nilpotent
class IsLocallyNilpotent (I : Ideal R) : Prop := class IsLocallyNilpotent {R : Type _} [CommRing R] (I : Ideal R) : Prop :=
h : ∀ x ∈ I, IsNilpotent x h : ∀ x ∈ I, IsNilpotent x
#check Ideal.IsLocallyNilpotent #check Ideal.IsLocallyNilpotent
end Ideal end Ideal
@ -89,6 +94,10 @@ lemma containment_radical_power_containment :
-- Ideal.exists_pow_le_of_le_radical_of_fG -- Ideal.exists_pow_le_of_le_radical_of_fG
-- Stacks Lemma 10.52.5: R → S is a ring map. M is an S-mod.
-- Then length_R M ≥ length_S M.
-- Stacks Lemma 10.52.5': equality holds if R → S is surjective.
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is -- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
-- the same as the dimension as a vector space over R/I, -- the same as the dimension as a vector space over R/I,
lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I] lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
@ -96,48 +105,53 @@ lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
→ Module.length R M = Module.rank RI M(I • ( : Submodule R M)) := by sorry → Module.length R M = Module.rank RI M(I • ( : Submodule R M)) := by sorry
-- Does lean know that M/IM is a R/I module? -- Does lean know that M/IM is a R/I module?
-- Use 10.52.5
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R. -- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
-- M is a finite R-mod and I^nM=0. Then length of M is finite. -- M is a finite R-mod and I^nM=0. Then length of M is finite.
lemma power_zero_finite_length : Ideal.FG I → Ideal.IsMaximal I → Module.Finite R M lemma power_zero_finite_length [Ideal.IsMaximal I] (h₁ : Ideal.FG I) [Module.Finite R M]
(∃ n : , (I ^ n) • ( : Submodule R M) = 0) (h₂ : (∃ n : , (I ^ n) • ( : Submodule R M) = 0)) :
(∃ m : , Module.length R M ≤ m) := by (∃ m : , Module.length R M ≤ m) := by sorry
intro IisFG IisMaximal MisFinite power -- intro IisFG IisMaximal MisFinite power
rcases power with ⟨n, npower⟩ -- rcases power with ⟨n, npower⟩
-- how do I get a generating set? -- how do I get a generating set?
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals -- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
lemma IsArtinian_iff_finite_max_ideal : lemma Artinian_has_finite_max_ideal
IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry [IsArtinianRing R] : Finite (MaximalSpectrum R) := by
by_contra infinite
simp only [not_finite_iff_infinite] at infinite
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent -- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
lemma Jacobson_of_Artinian_is_nilpotent : lemma Jacobson_of_Artinian_is_nilpotent
IsArtinianRing R → IsNilpotent (Ideal.jacobson ( : Ideal R)) := by sorry [IsArtinianRing R] : IsNilpotent (Ideal.jacobson (⊥ : Ideal R)) := by
have J := Ideal.jacobson (⊥ : Ideal R)
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and -- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
-- locally nilpotent Jacobson radical, then R is the product of its localizations at -- locally nilpotent Jacobson radical, then R is the product of its localizations at
-- its maximal ideals. Also, all primes are maximal -- its maximal ideals. Also, all primes are maximal
abbrev Prod_of_localization :=
Π I : MaximalSpectrum R, Localization.AtPrime I.1
-- lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R) -- instance : CommRing (Prod_of_localization R) := by
-- ∧ -- unfold Prod_of_localization
-- infer_instance
def jaydensRing : Type _ := sorry def foo : Prod_of_localization R →+* R where
-- ∀ I : MaximalSpectrum R, Localization.AtPrime R I toFun := sorry
invFun := sorry
left_inv := sorry
right_inv := sorry
map_mul' := sorry
map_add' := sorry
instance : CommRing jaydensRing := sorry -- this should come for free, don't even need to state it
def foo : jaydensRing ≃+* R where def product_of_localization_at_maximal_ideal [Finite (MaximalSpectrum R)]
toFun := _ (h : Ideal.IsLocallyNilpotent (Ideal.jacobson (⊥ : Ideal R))) :
invFun := _ Prod_of_localization R ≃+* R := by sorry
left_inv := _
right_inv := _
map_mul' := _
map_add' := _
-- Ideal.IsLocallyNilpotent (Ideal.jacobson ( : Ideal R)) →
-- Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
-- := by sorry
-- Haven't finished this.
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod -- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
lemma IsArtinian_iff_finite_length : lemma IsArtinian_iff_finite_length :
@ -148,8 +162,8 @@ lemma finite_length_is_Noetherian :
(∃ n : , Module.length R R ≤ n) → IsNoetherianRing R := by sorry (∃ n : , Module.length R R ≤ n) → IsNoetherianRing R := by sorry
-- Lemma: if R is Artinian then all the prime ideals are maximal -- Lemma: if R is Artinian then all the prime ideals are maximal
lemma primes_of_Artinian_are_maximal : lemma primes_of_Artinian_are_maximal
IsArtinianRing R → Ideal.IsPrime I → Ideal.IsMaximal I := by sorry [IsArtinianRing R] [Ideal.IsPrime I] : Ideal.IsMaximal I := by sorry
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals -- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals