mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
started the proof for the base case
This commit is contained in:
parent
5a86902118
commit
53c4675cb8
1 changed files with 123 additions and 26 deletions
|
@ -4,6 +4,14 @@ import Mathlib.Algebra.Module.GradedModule
|
|||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.SimpleModule
|
||||
import CommAlg.krull
|
||||
|
||||
|
||||
#check Ideal.dim_field_eq_zero
|
||||
#check Ideal.domain_dim_zero.isField
|
||||
#check Ideal.Quotient.isDomain_iff_prime
|
||||
|
||||
|
||||
-- Setting for "library_search"
|
||||
|
@ -67,15 +75,17 @@ instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGr
|
|||
|
||||
-- Definition of a Hilbert function of a graded module
|
||||
section
|
||||
|
||||
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
||||
|
||||
noncomputable def dimensionring { A: Type _}
|
||||
[CommRing A] := krullDim (PrimeSpectrum A)
|
||||
|
||||
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := Ideal.krullDim (A ⧸ ((⊤ : Submodule A M).annihilator))
|
||||
|
||||
|
||||
lemma equaldim ( A : Type _) [CommRing A] (I : Ideal A): dimensionmodule (A) (A ⧸ I) = Ideal.krullDim (A ⧸ I) := by
|
||||
sorry
|
||||
end
|
||||
|
||||
|
||||
|
@ -121,39 +131,79 @@ def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _)
|
|||
sorry
|
||||
|
||||
|
||||
def graded_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
def graded_ring_morphism (𝒜 : ℤ → Type _) (ℬ : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (ℬ i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing ℬ] (f : (⨁ i, 𝒜 i) →+* (⨁ i, ℬ i)) := ∀ i, ∀ (r : 𝒜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0)
|
||||
|
||||
def graded_module_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) : ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by sorry
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) := ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f)
|
||||
|
||||
|
||||
def graded_submodule
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type u) (𝓝 : ℤ → Type u)
|
||||
def graded_module_isomorphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||
(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i)) (i : ℤ )
|
||||
: ∃(piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i := by
|
||||
sorry
|
||||
(f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i))
|
||||
:= (graded_module_morphism 𝒜 𝓜 𝓝 f) ∧ (Function.Bijective f)
|
||||
|
||||
def graded_ring_isomorphism (𝒜 : ℤ → Type _) (𝓑 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓑 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓑]
|
||||
(f : (⨁ i, 𝒜 i) →+* (⨁ i, 𝓑 i))
|
||||
:= (graded_ring_morphism 𝒜 𝓑 f) ∧ (Function.Bijective f)
|
||||
|
||||
def graded_ring_isomorphic (𝒜 : ℤ → Type _) (𝓑 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓑 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓑] := ∃ (f : (⨁ i, 𝒜 i) →+* (⨁ i, 𝓑 i)),graded_ring_isomorphism 𝒜 𝓑 f
|
||||
|
||||
|
||||
|
||||
-- def graded_submodule
|
||||
-- (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||
-- [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||
-- [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||
-- (h (⨁ i, 𝓝 i) : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) :
|
||||
-- Prop :=
|
||||
-- ∃ (piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i
|
||||
|
||||
|
||||
end
|
||||
|
||||
class DirectSum.GalgebrA
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝓜]
|
||||
extends DirectSum.Gmodule 𝒜 𝓜
|
||||
|
||||
def graded_algebra_morphism (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝓜] [DirectSum.GalgebrA 𝒜 𝓜]
|
||||
(𝓝 : ℤ → Type _) [∀ i, AddCommGroup (𝓝 i)] [DirectSum.GCommRing 𝓝] [DirectSum.GalgebrA 𝒜 𝓝]
|
||||
(f : (⨁ i, 𝓜 i) →+* (⨁ i, 𝓝 i)) := (graded_ring_morphism 𝓜 𝓝 f) ∧ (graded_module_morphism 𝒜 𝓜 𝓝 f)
|
||||
|
||||
|
||||
|
||||
-- @Quotient of a graded ring R by a graded ideal p is a graded R-alg, preserving each component
|
||||
|
||||
|
||||
-- @Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
||||
instance Quotient_of_graded_is_graded
|
||||
instance Quotient_of_graded_gradedring
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
: DirectSum.GCommRing (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
sorry
|
||||
|
||||
instance Quotient_of_graded_is_gradedalg
|
||||
(𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
: DirectSum.GalgebrA 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
sorry
|
||||
|
||||
lemma Quotient_of_graded_ringiso (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜](p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||
: Nonempty ((⨁ i, (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) ≃+* ((⨁ i, (𝒜 i))⧸p)) := by
|
||||
sorry
|
||||
|
||||
|
||||
-- If A_0 is Artinian and local, then A is graded local
|
||||
lemma Graded_local_if_zero_component_Artinian_and_local (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := by
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃! ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := by
|
||||
sorry
|
||||
|
||||
|
||||
|
@ -225,20 +275,67 @@ theorem Hilbert_polynomial_d_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [
|
|||
sorry
|
||||
|
||||
|
||||
-- (reduced version) [BH, 4.1.3] when d = 0
|
||||
-- If M is a finite graed R-Mod of dimension zero, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) = 0 for n >> 0
|
||||
#check Ideal.dim_field_eq_zero
|
||||
#check Ideal.domain_dim_zero.isField
|
||||
--#check Quotient.isDomain_iff_prime
|
||||
|
||||
#check DirectSum
|
||||
|
||||
-- f (g a) = f (g b)
|
||||
|
||||
-- DirectSum _ (fun i => ...) = DirectSum _ (fun i => ...)
|
||||
|
||||
theorem Hilbert_polynomial_d_0_reduced
|
||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
[DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓜]
|
||||
[DirectSum.GalgebrA 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||||
(hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p)
|
||||
(hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
||||
sorry
|
||||
|
||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (hq : HomogeneousPrime 𝒜 p)
|
||||
(hm : ∀ i, 𝓜 i = ((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||
: (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
||||
let 𝓜' := fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)
|
||||
have h : 𝓜 = 𝓜' := by
|
||||
ext i
|
||||
exact hm i
|
||||
subst h
|
||||
set R := ⨁ i, 𝒜 i
|
||||
have : (⨁ i, 𝓜' i )= ⨁ i, ((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||
rfl
|
||||
|
||||
--have h1 : Nonempty ((⨁ i, 𝓜 i) ≃+* (R⧸p)) := by
|
||||
|
||||
-- apply Quotient_of_graded_ringiso 𝒜 p hp
|
||||
-- have : Ideal.krullDim (R ⧸ p) = 0 := by
|
||||
-- calc 0 = dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) := by apply findim
|
||||
-- _ = dimensionmodule (R) (R ⧸ p) := by apply h1
|
||||
-- _ = Ideal.krullDim (R_mod_p) := by apply equaldim
|
||||
-- sorry
|
||||
|
||||
lemma
|
||||
|
||||
-- (reduced version) [BH, 4.1.3] when d = 0
|
||||
-- If M is a finite graed R-Mod of dimension zero, and M = R⧸ 𝓅 for a graded prime ideal 𝓅, then the Hilbert function H(M, n) = 0 for n >> 0
|
||||
-- theorem Hilbert_polynomial_d_0_reduced
|
||||
-- (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
-- [DirectSum.GCommRing 𝒜] [DirectSum.GCommRing 𝓜]
|
||||
-- [DirectSum.GalgebrA 𝒜 𝓜] (st: StandardGraded 𝒜) (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
-- (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
-- (findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0)
|
||||
-- (hilb : ℤ → ℤ) (Hhilb : hilbert_function 𝒜 𝓜 hilb)
|
||||
-- (p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (hq : HomogeneousPrime 𝒜 p)
|
||||
-- (hm : 𝓜 = (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)))
|
||||
-- : (∃ (N : ℤ), ∀ (n : ℤ), n ≥ N → hilb n = 0) := by
|
||||
-- set R := ⨁ i, 𝒜 i
|
||||
-- have h := (Ideal.Quotient.isDomain_iff_prime p).mpr hq.1
|
||||
-- have h1 : Nonempty ((⨁ i, 𝓜 i)) ≃+* (R⧸p)) := by
|
||||
-- apply Quotient_of_graded_ringiso 𝒜 p hp
|
||||
-- have : Ideal.krullDim (R ⧸ p) = 0 := by
|
||||
-- calc 0 = dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) := by apply findim
|
||||
-- _ = dimensionmodule (R) (R ⧸ p) := by apply h1
|
||||
-- _ = Ideal.krullDim (R_mod_p) := by apply equaldim
|
||||
-- sorry
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue