mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-25 23:28:36 -06:00
Merge branch 'main' of github.com:GTBarkley/comm_alg into main
This commit is contained in:
commit
50ed3f1de9
3 changed files with 141 additions and 40 deletions
|
@ -66,13 +66,6 @@ end section
|
|||
def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ)
|
||||
| f, 0 => f
|
||||
| f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n)
|
||||
section
|
||||
|
||||
#check Δ
|
||||
def f (n : ℤ) := n
|
||||
#eval (Δ f 1) 100
|
||||
-- #check (by (show_term unfold Δ) : Δ f 0=0)
|
||||
end section
|
||||
|
||||
-- (NO need to prove another direction) Constant polynomial function = constant function
|
||||
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||
|
@ -86,12 +79,28 @@ lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
|||
simp
|
||||
· sorry
|
||||
|
||||
-- Get the polynomial G (X) = F (X + s) from the polynomial F(X)
|
||||
lemma Polynomial_shifting (F : Polynomial ℚ) (s : ℚ) : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||||
sorry
|
||||
|
||||
-- Shifting doesn't change the polynomial type
|
||||
lemma Poly_shifting (f : ℤ → ℤ) (g : ℤ → ℤ) (hf : PolyType f d) (s : ℤ) (hfg : ∀ (n : ℤ), f (n + s) = g (n)) : PolyType g d := by
|
||||
simp only [PolyType]
|
||||
rcases hf with ⟨F, hh⟩
|
||||
rcases hh with ⟨N,ss⟩
|
||||
rcases hh with ⟨N,s1, s2⟩
|
||||
have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + s) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||||
exact Polynomial_shifting F s
|
||||
rcases this with ⟨Poly, h1, h2⟩
|
||||
use Poly
|
||||
use N
|
||||
constructor
|
||||
· intro n
|
||||
specialize s1 (n + s)
|
||||
intro hN
|
||||
have this1 : f (n + s) = Polynomial.eval (n + s : ℚ) F := by
|
||||
sorry
|
||||
sorry
|
||||
· rw [h2, s2]
|
||||
|
||||
-- PolyType 0 = constant function
|
||||
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ),
|
||||
|
@ -126,11 +135,43 @@ lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by rfl
|
|||
--simp only [Δ]
|
||||
-- Δ of 1 times decreaes the polynomial type by one
|
||||
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ) : PolyType f (d + 1) → PolyType (Δ f 1) d := by
|
||||
intro h
|
||||
simp only [PolyType, Δ, Int.cast_sub, exists_and_right]
|
||||
rcases h with ⟨F, N, h⟩
|
||||
rcases h with ⟨h1, h2⟩
|
||||
have this : ∃ (G : Polynomial ℚ), (∀ (x : ℚ), Polynomial.eval x G = Polynomial.eval (x + 1) F) ∧ (Polynomial.degree G = Polynomial.degree F) := by
|
||||
exact Polynomial_shifting F 1
|
||||
rcases this with ⟨G, hG, hGG⟩
|
||||
let Poly := G - F
|
||||
use Poly
|
||||
constructor
|
||||
· use N
|
||||
intro n hn
|
||||
specialize hG n
|
||||
norm_num
|
||||
rw [hG]
|
||||
let h3 := h1
|
||||
specialize h3 n
|
||||
have this1 : f n = Polynomial.eval (n : ℚ) F := by tauto
|
||||
have this2 : f (n + 1) = Polynomial.eval ((n + 1) : ℚ) F := by
|
||||
specialize h1 (n + 1)
|
||||
have this3 : N ≤ n + 1 := by linarith
|
||||
aesop
|
||||
rw [←this1, ←this2]
|
||||
· have this1 : Polynomial.degree Poly = d := by
|
||||
have this2 : Polynomial.degree Poly ≤ d := by
|
||||
sorry
|
||||
have this3 : Polynomial.degree Poly ≥ d := by
|
||||
sorry
|
||||
sorry
|
||||
tauto
|
||||
|
||||
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||
lemma Δ_1_s_equiv_Δ_s_1 (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
||||
sorry
|
||||
induction' s with s hs
|
||||
· norm_num
|
||||
· aesop
|
||||
|
||||
lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by
|
||||
induction' d with d hd
|
||||
· intro f h
|
||||
|
@ -143,7 +184,17 @@ lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ
|
|||
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 :=
|
||||
fun h => (foofoo d f) h
|
||||
|
||||
lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||||
-- The "reverse" of Δ of 1 times increases the polynomial type by one
|
||||
lemma Δ_1_ (f : ℤ → ℤ) (d : ℕ) : PolyType (Δ f 1) d → PolyType f (d + 1) := by
|
||||
intro h
|
||||
simp only [PolyType, Nat.cast_add, Nat.cast_one, exists_and_right]
|
||||
rcases h with ⟨P, N, h⟩
|
||||
rcases h with ⟨h1, h2⟩
|
||||
let G := fun (q : ℤ) => f (N)
|
||||
sorry
|
||||
|
||||
|
||||
lemma foo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0) → (PolyType f d) := by
|
||||
induction' d with d hd
|
||||
|
||||
-- Base case
|
||||
|
@ -160,8 +211,23 @@ lemma foofoofoo (d : ℕ) : (f : ℤ → ℤ) → (∃ (c : ℤ), ∃ (N : ℤ),
|
|||
intro h
|
||||
rcases h with ⟨c, N, h⟩
|
||||
have this : PolyType f (d + 1) := by
|
||||
sorry
|
||||
rcases h with ⟨H,c0⟩
|
||||
let g := (Δ f 1)
|
||||
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), (∀ (n : ℤ), N ≤ n → (Δ g d) (n) = c) ∧ c ≠ 0) := by
|
||||
use c; use N
|
||||
constructor
|
||||
· intro n
|
||||
specialize H n
|
||||
intro h
|
||||
have this : Δ f (d + 1) n = c := by tauto
|
||||
rw [←this]
|
||||
rw [Δ_1_s_equiv_Δ_s_1]
|
||||
· tauto
|
||||
have this2 : PolyType g d := by
|
||||
apply hd
|
||||
tauto
|
||||
exact Δ_1_ f d this2
|
||||
exact this
|
||||
|
||||
-- [BH, 4.1.2] (a) => (b)
|
||||
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||||
|
|
|
@ -61,7 +61,7 @@ lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
|||
|
||||
/-- In a domain, the height of a prime ideal is Bot (0 in this case) iff it's the Bot ideal. -/
|
||||
@[simp]
|
||||
lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
|
||||
lemma height_bot_iff_bot {D: Type _} [CommRing D] [IsDomain D] {P : PrimeSpectrum D} : height P = ⊥ ↔ P = ⊥ := by
|
||||
constructor
|
||||
· intro h
|
||||
unfold height at h
|
||||
|
@ -85,6 +85,10 @@ lemma height_bot_iff_bot {D: Type} [CommRing D] [IsDomain D] {P : PrimeSpectrum
|
|||
have := not_lt_of_lt JneP
|
||||
contradiction
|
||||
|
||||
@[simp]
|
||||
lemma height_bot_eq {D: Type _} [CommRing D] [IsDomain D] : height (⊥ : PrimeSpectrum D) = ⊥ := by
|
||||
rw [height_bot_iff_bot]
|
||||
|
||||
/-- The Krull dimension of a ring being ≥ n is equivalent to there being an
|
||||
ideal of height ≥ n. -/
|
||||
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||
|
@ -284,27 +288,11 @@ lemma field_prime_bot {K: Type _} [Field K] {P : Ideal K} : IsPrime P ↔ P =
|
|||
exact bot_prime
|
||||
|
||||
/-- In a field, all primes have height 0. -/
|
||||
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] {P : PrimeSpectrum K} : height P = ⊥ := by
|
||||
-- This should be doable by
|
||||
-- have : IsPrime P.asIdeal := P.IsPrime
|
||||
-- rw [field_prime_bot] at this
|
||||
-- have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
||||
-- rw [height_bot_iff_bot]
|
||||
-- Need to check what's happening
|
||||
rw [bot_eq_zero]
|
||||
unfold height
|
||||
simp only [Set.chainHeight_eq_zero_iff]
|
||||
by_contra spec
|
||||
change _ ≠ _ at spec
|
||||
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||
obtain ⟨J, JlP : J < P⟩ := spec
|
||||
have P0 : IsPrime P.asIdeal := P.IsPrime
|
||||
have J0 : IsPrime J.asIdeal := J.IsPrime
|
||||
rw [field_prime_bot] at P0 J0
|
||||
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
||||
have : J = P := PrimeSpectrum.ext J P this
|
||||
have : J ≠ P := ne_of_lt JlP
|
||||
contradiction
|
||||
lemma field_prime_height_bot {K: Type _} [Nontrivial K] [Field K] (P : PrimeSpectrum K) : height P = ⊥ := by
|
||||
have : IsPrime P.asIdeal := P.IsPrime
|
||||
rw [field_prime_bot] at this
|
||||
have : P = ⊥ := PrimeSpectrum.ext P ⊥ this
|
||||
rwa [height_bot_iff_bot]
|
||||
|
||||
/-- The Krull dimension of a field is 0. -/
|
||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||
|
@ -370,6 +358,37 @@ lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1
|
|||
rw [dim_le_one_iff]
|
||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||
|
||||
/-- The ring of polynomials over a field has dimension one. -/
|
||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
rw [le_antisymm_iff]
|
||||
let X := @Polynomial.X K _
|
||||
constructor
|
||||
· exact dim_le_one_of_pid
|
||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||
· obtain ⟨I, h⟩ := this
|
||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||
exact le_trans h this
|
||||
have primeX : Prime Polynomial.X := @Polynomial.prime_X K _ _
|
||||
have : IsPrime (span {X}) := by
|
||||
refine (span_singleton_prime ?hp).mpr primeX
|
||||
exact Polynomial.X_ne_zero
|
||||
let P := PrimeSpectrum.mk (span {X}) this
|
||||
unfold height
|
||||
use P
|
||||
have : ⊥ ∈ {J | J < P} := by
|
||||
simp only [Set.mem_setOf_eq, bot_lt_iff_ne_bot]
|
||||
suffices : P.asIdeal ≠ ⊥
|
||||
· by_contra x
|
||||
rw [PrimeSpectrum.ext_iff] at x
|
||||
contradiction
|
||||
by_contra x
|
||||
simp only [span_singleton_eq_bot] at x
|
||||
have := @Polynomial.X_ne_zero K _ _
|
||||
contradiction
|
||||
have : {J | J < P}.Nonempty := Set.nonempty_of_mem this
|
||||
rwa [←Set.one_le_chainHeight_iff, ←WithBot.one_le_coe] at this
|
||||
|
||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry
|
||||
|
||||
|
|
|
@ -7,6 +7,20 @@ import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
|||
|
||||
namespace Ideal
|
||||
|
||||
private lemma singleton_bot_chainHeight_one {α : Type} [Preorder α] [Bot α] : Set.chainHeight {(⊥ : α)} ≤ 1 := by
|
||||
unfold Set.chainHeight
|
||||
simp only [iSup_le_iff, Nat.cast_le_one]
|
||||
intro L h
|
||||
unfold Set.subchain at h
|
||||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at h
|
||||
rcases L with (_ | ⟨a,L⟩)
|
||||
. simp only [List.length_nil, zero_le]
|
||||
rcases L with (_ | ⟨b,L⟩)
|
||||
. simp only [List.length_singleton, le_refl]
|
||||
simp only [List.chain'_cons, List.find?, List.mem_cons, forall_eq_or_imp] at h
|
||||
rcases h with ⟨⟨h1, _⟩, ⟨rfl, rfl, _⟩⟩
|
||||
exact absurd h1 (lt_irrefl _)
|
||||
|
||||
/-- The ring of polynomials over a field has dimension one. -/
|
||||
lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullDim (Polynomial K) = 1 := by
|
||||
rw [le_antisymm_iff]
|
||||
|
@ -27,7 +41,7 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD
|
|||
have : I = ⊥ := PrimeSpectrum.ext I ⊥ a
|
||||
contradiction
|
||||
have maxI := IsPrime.to_maximal_ideal this
|
||||
have singleton : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
|
||||
have sngletn : ∀P, P ∈ {J | J < I} ↔ P = ⊥ := by
|
||||
intro P
|
||||
constructor
|
||||
· intro H
|
||||
|
@ -49,9 +63,11 @@ lemma polynomial_over_field_dim_one {K : Type} [Nontrivial K] [Field K] : krullD
|
|||
· intro pBot
|
||||
simp only [Set.mem_setOf_eq, pBot]
|
||||
exact lt_of_le_of_ne bot_le h.symm
|
||||
replace singleton : {J | J < I} = {⊥} := Set.ext singleton
|
||||
replace sngletn : {J | J < I} = {⊥} := Set.ext sngletn
|
||||
unfold height
|
||||
sorry
|
||||
rw [sngletn]
|
||||
simp only [WithBot.coe_le_one, ge_iff_le]
|
||||
exact singleton_bot_chainHeight_one
|
||||
· suffices : ∃I : PrimeSpectrum (Polynomial K), 1 ≤ (height I : WithBot ℕ∞)
|
||||
· obtain ⟨I, h⟩ := this
|
||||
have : (height I : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum (Polynomial K)), ↑(height I) := by
|
||||
|
|
Loading…
Reference in a new issue