mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Completed most of the simple part
This commit is contained in:
parent
c3f9683893
commit
50515d9ed8
1 changed files with 10 additions and 5 deletions
|
@ -22,11 +22,7 @@ noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.c
|
||||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||||||
|
|
||||||
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
|
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := sorry -- Already done in main file
|
||||||
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
|
|
||||||
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
|
|
||||||
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
|
|
||||||
-- simp
|
|
||||||
|
|
||||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
krullDim R + 1 = krullDim (Polynomial R) := by
|
krullDim R + 1 = krullDim (Polynomial R) := by
|
||||||
|
@ -37,6 +33,15 @@ lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||||
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||||||
intro P
|
intro P
|
||||||
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
|
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
|
||||||
|
have : ∃ M, Ideal.IsMaximal M ∧ P.asIdeal ≤ M := by
|
||||||
|
apply exists_le_maximal
|
||||||
|
apply IsPrime.ne_top
|
||||||
|
apply P.IsPrime
|
||||||
|
obtain ⟨M, maxM, PleM⟩ := this
|
||||||
|
let P' : PrimeSpectrum (Polynomial R) := PrimeSpectrum.mk M (IsMaximal.isPrime maxM)
|
||||||
|
have PleP' : P ≤ P' := PleM
|
||||||
|
have : height P ≤ height P' := height_le_of_le PleP'
|
||||||
|
simp only [WithBot.coe_le_coe]
|
||||||
sorry
|
sorry
|
||||||
obtain ⟨I, IP⟩ := this
|
obtain ⟨I, IP⟩ := this
|
||||||
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
|
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
|
||||||
|
|
Loading…
Reference in a new issue