Implemented FieldisArtinian lemma

This commit is contained in:
Sameer Savkar 2023-06-15 10:26:31 -07:00
parent 5cebb2fa13
commit 4e819719a6

View file

@ -7,9 +7,19 @@ import Mathlib.RingTheory.DedekindDomain.DVR
lemma FieldisArtinian (R : Type _) [CommRing R] (h : IsField R) : lemma FieldisArtinian (R : Type _) [CommRing R] (h : IsField R) :
IsArtinianRing R := by sorry IsArtinianRing R := by
let inst := h.toField
rw [isArtinianRing_iff, isArtinian_iff_wellFounded]
apply WellFounded.intro
intro I
constructor
intro J hJI
constructor
intro K hKJ
exfalso
rcases Ideal.eq_bot_or_top J with rfl | rfl
. exact not_lt_bot hKJ
. exact not_top_lt hJI
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R] lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
(IsArt : IsArtinianRing R) : IsField (R) := by (IsArt : IsArtinianRing R) : IsField (R) := by