mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
commit
4e38ef0a73
1 changed files with 279 additions and 85 deletions
|
@ -1,105 +1,299 @@
|
||||||
|
import Mathlib
|
||||||
|
import Mathlib.Algebra.MonoidAlgebra.Basic
|
||||||
|
import Mathlib.Data.Finset.Sort
|
||||||
|
import Mathlib.Order.Height
|
||||||
import Mathlib.Order.KrullDimension
|
import Mathlib.Order.KrullDimension
|
||||||
|
import Mathlib.Order.JordanHolder
|
||||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||||
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.RingTheory.Ideal.Basic
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
import Mathlib.LinearAlgebra.Finsupp
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||||
|
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||||
import Mathlib.Algebra.Module.GradedModule
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
import Mathlib.RingTheory.Artinian
|
import Mathlib.RingTheory.Artinian
|
||||||
import Mathlib.Order.Height
|
import Mathlib.Algebra.Module.GradedModule
|
||||||
|
import Mathlib.RingTheory.Noetherian
|
||||||
|
import Mathlib.RingTheory.Finiteness
|
||||||
|
import Mathlib.RingTheory.Ideal.Operations
|
||||||
|
|
||||||
noncomputable def length ( A : Type _) (M : Type _)
|
-- Setting for "library_search"
|
||||||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
set_option maxHeartbeats 0
|
||||||
|
macro "ls" : tactic => `(tactic|library_search)
|
||||||
|
|
||||||
def Ideal.IsHomogeneous' (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)]
|
-- New tactic "obviously"
|
||||||
[DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := ∀ (i : ℤ ) ⦃r : (⨁ i, 𝒜 i)⦄, r ∈ I → DirectSum.of _ i ( r i : 𝒜 i) ∈ I
|
macro "obviously" : tactic =>
|
||||||
|
`(tactic| (
|
||||||
|
first
|
||||||
|
| dsimp; simp; done; dbg_trace "it was dsimp simp"
|
||||||
|
| simp; done; dbg_trace "it was simp"
|
||||||
|
| tauto; done; dbg_trace "it was tauto"
|
||||||
|
| simp; tauto; done; dbg_trace "it was simp tauto"
|
||||||
|
| rfl; done; dbg_trace "it was rfl"
|
||||||
|
| norm_num; done; dbg_trace "it was norm_num"
|
||||||
|
| /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith"
|
||||||
|
-- | gcongr; done
|
||||||
|
| ring; done; dbg_trace "it was ring"
|
||||||
|
| trivial; done; dbg_trace "it was trivial"
|
||||||
|
-- | nlinarith; done
|
||||||
|
| fail "No, this is not obvious."))
|
||||||
|
|
||||||
|
|
||||||
def HomogeneousPrime (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
-- Testing of Polynomial
|
||||||
|
section Polynomial
|
||||||
|
variable [Semiring ℕ]
|
||||||
|
variable [Semiring ℤ]
|
||||||
|
variable [Semiring ℚ]
|
||||||
|
noncomputable section
|
||||||
|
#check Polynomial
|
||||||
|
#check Polynomial (ℚ)
|
||||||
|
#check Polynomial.eval
|
||||||
|
|
||||||
|
|
||||||
def HomogeneousMax (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous' 𝒜 I)
|
example (f : Polynomial ℚ) (hf : f = Polynomial.C (1 : ℚ)) : Polynomial.eval 2 f = 1 := by
|
||||||
|
have : ∀ (q : ℚ), Polynomial.eval q f = 1 := by
|
||||||
|
sorry
|
||||||
|
obviously
|
||||||
|
|
||||||
--theorem monotone_stabilizes_iff_noetherian :
|
-- example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : Polynomial.eval 2 f = 4 := by
|
||||||
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
-- sorry
|
||||||
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
|
||||||
|
|
||||||
open GradedMonoid.GSmul
|
-- degree of a constant function is ⊥ (is this same as -1 ???)
|
||||||
|
#print Polynomial.degree_zero
|
||||||
|
|
||||||
open DirectSum
|
def F : Polynomial ℚ := Polynomial.C (2 : ℚ)
|
||||||
|
#print F
|
||||||
|
#check F
|
||||||
|
#check Polynomial.degree F
|
||||||
|
#check Polynomial.degree 0
|
||||||
|
#check WithBot ℕ
|
||||||
|
-- #eval Polynomial.degree F
|
||||||
|
#check Polynomial.eval 1 F
|
||||||
|
example : Polynomial.eval (100 : ℚ) F = (2 : ℚ) := by
|
||||||
|
refine Iff.mpr (Rat.ext_iff (Polynomial.eval 100 F) 2) ?_
|
||||||
|
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
||||||
|
rw [F]
|
||||||
|
simp
|
||||||
|
|
||||||
|
-- Treat polynomial f ∈ ℚ[X] as a function f : ℚ → ℚ
|
||||||
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
#check CoeFun
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
|
||||||
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
|
||||||
|
|
||||||
lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
|
||||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
|
|
||||||
of _ _ (a • m) = of _ _ a • of _ _ m := by
|
|
||||||
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
|
|
||||||
refine' of_eq_of_gradedMonoid_eq _
|
|
||||||
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
|
|
||||||
|
|
||||||
instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
|
||||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
|
|
||||||
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
|
|
||||||
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
|
|
||||||
|
|
||||||
instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
|
||||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
|
|
||||||
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
|
||||||
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
|
||||||
|
|
||||||
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
|
||||||
|
|
||||||
noncomputable def dimensionring { A: Type _}
|
|
||||||
[CommRing A] := krullDim (PrimeSpectrum A)
|
|
||||||
|
|
||||||
|
|
||||||
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
|
||||||
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
|
||||||
|
|
||||||
-- (∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {x}).annihilator )
|
|
||||||
|
|
||||||
-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
-- [DirectSum.GCommRing 𝒜]
|
|
||||||
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
|
||||||
|
|
||||||
|
|
||||||
def PolyType (f : ℤ → ℤ) (d : ℕ ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
end section
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
-- @[BH, 4.1.2]
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : ℤ → ℤ)
|
-- All the polynomials are in ℚ[X], all the functions are considered as ℤ → ℤ
|
||||||
(Hhilb: hilbert_function 𝒜 𝓜 hilb)
|
noncomputable section
|
||||||
: PolyType hilb (d - 1) := by
|
-- Polynomial type of degree d
|
||||||
|
@[simp]
|
||||||
|
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||||
|
section
|
||||||
|
-- structure PolyType (f : ℤ → ℤ) where
|
||||||
|
-- Poly : Polynomial ℤ
|
||||||
|
-- d :
|
||||||
|
-- N : ℤ
|
||||||
|
-- Poly_equal : ∀ n ∈ ℤ → f n = Polynomial.eval n : ℤ Poly
|
||||||
|
|
||||||
|
#check PolyType
|
||||||
|
|
||||||
|
example (f : ℤ → ℤ) (hf : ∀ x, f x = x ^ 2) : PolyType f 2 := by
|
||||||
|
unfold PolyType
|
||||||
|
sorry
|
||||||
|
-- use Polynomial.monomial (2 : ℤ) (1 : ℤ)
|
||||||
|
-- have' := hf 0; ring_nf at this
|
||||||
|
-- exact this
|
||||||
|
|
||||||
|
end section
|
||||||
|
|
||||||
|
-- Δ operator (of d times)
|
||||||
|
@[simp]
|
||||||
|
def Δ : (ℤ → ℤ) → ℕ → (ℤ → ℤ)
|
||||||
|
| f, 0 => f
|
||||||
|
| f, d + 1 => fun (n : ℤ) ↦ (Δ f d) (n + 1) - (Δ f d) (n)
|
||||||
|
section
|
||||||
|
-- def Δ (f : ℤ → ℤ) (d : ℕ) := fun (n : ℤ) ↦ f (n + 1) - f n
|
||||||
|
-- def add' : ℕ → ℕ → ℕ
|
||||||
|
-- | 0, m => m
|
||||||
|
-- | n+1, m => (add' n m) + 1
|
||||||
|
-- #eval add' 5 10
|
||||||
|
#check Δ
|
||||||
|
def f (n : ℤ) := n
|
||||||
|
#eval (Δ f 1) 100
|
||||||
|
-- #check (by (show_term unfold Δ) : Δ f 0=0)
|
||||||
|
end section
|
||||||
|
|
||||||
|
|
||||||
|
-- (NO need to prove) Constant polynomial function = constant function
|
||||||
|
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||||
|
(F = Polynomial.C c) ↔ (∀ r : ℚ, (Polynomial.eval r F) = c) := by
|
||||||
|
constructor
|
||||||
|
· intro h
|
||||||
|
rintro r
|
||||||
|
refine Iff.mpr (Rat.ext_iff (Polynomial.eval r F) c) ?_
|
||||||
|
simp only [Rat.ofNat_num, Rat.ofNat_den]
|
||||||
|
rw [h]
|
||||||
|
simp
|
||||||
|
· sorry
|
||||||
|
|
||||||
|
-- PolyType 0 = constant function
|
||||||
|
lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), (N ≤ n → f n = c) ∧ c ≠ 0) := by
|
||||||
|
constructor
|
||||||
|
· intro h
|
||||||
|
rcases h with ⟨Poly, hN⟩
|
||||||
|
rcases hN with ⟨N, hh⟩
|
||||||
|
have H1 := λ n hn => (hh n hn).left
|
||||||
|
have H2 := λ n hn => (hh n hn).right
|
||||||
|
clear hh
|
||||||
|
specialize H2 (N + 1)
|
||||||
|
have this1 : Polynomial.degree Poly = 0 := by
|
||||||
|
have : N ≤ N + 1 := by
|
||||||
|
dsimp
|
||||||
|
simp
|
||||||
|
tauto
|
||||||
|
have this2 : ∃ (c : ℤ), Poly = Polynomial.C (c : ℚ) := by
|
||||||
|
have HH : ∃ (c : ℚ), Poly = Polynomial.C (c : ℚ) := by
|
||||||
|
use Poly.coeff 0
|
||||||
|
apply Polynomial.eq_C_of_degree_eq_zero
|
||||||
|
exact this1
|
||||||
|
cases' HH with c HHH
|
||||||
|
have HHHH : ∃ (d : ℤ), d = c := by
|
||||||
|
sorry
|
||||||
|
cases' HHHH with d H5
|
||||||
|
use d
|
||||||
|
rw [H5]
|
||||||
|
exact HHH
|
||||||
|
clear this1
|
||||||
|
rcases this2 with ⟨c, hthis2⟩
|
||||||
|
use c
|
||||||
|
use N
|
||||||
|
intro n
|
||||||
|
specialize H1 n
|
||||||
|
constructor
|
||||||
|
· intro HH1
|
||||||
|
have this3 : f n = Polynomial.eval (n : ℚ) Poly := by
|
||||||
|
tauto
|
||||||
|
have this4 : Polynomial.eval (n : ℚ) Poly = c := by
|
||||||
|
rw [hthis2]
|
||||||
|
dsimp
|
||||||
|
simp
|
||||||
|
have this5 : f n = (c : ℚ) := by
|
||||||
|
rw [←this4, this3]
|
||||||
|
exact Iff.mp (Rat.coe_int_inj (f n) c) this5
|
||||||
|
· sorry
|
||||||
|
|
||||||
|
|
||||||
|
· intro h
|
||||||
|
rcases h with ⟨c, N, aaa⟩
|
||||||
|
let (Poly : Polynomial ℚ) := Polynomial.C (c : ℚ)
|
||||||
|
use Poly
|
||||||
|
use N
|
||||||
|
intro n Nn
|
||||||
|
specialize aaa n
|
||||||
|
have this1 : c ≠ 0 → f n = c := by
|
||||||
|
tauto
|
||||||
|
constructor
|
||||||
|
· sorry
|
||||||
|
· sorry
|
||||||
|
-- apply Polynomial.degree_C c
|
||||||
|
|
||||||
|
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||||
|
lemma Δ_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := by
|
||||||
|
intro h
|
||||||
|
rcases h with ⟨Poly, hN⟩
|
||||||
|
rcases hN with ⟨N, hh⟩
|
||||||
|
have H1 := λ n hn => (hh n hn).left
|
||||||
|
have H2 := λ n hn => (hh n hn).right
|
||||||
|
clear hh
|
||||||
|
have HH2 : d = Polynomial.degree Poly := by
|
||||||
|
sorry
|
||||||
|
induction' d with d hd
|
||||||
|
· rw [PolyType_0]
|
||||||
|
sorry
|
||||||
|
· sorry
|
||||||
|
|
||||||
|
-- [BH, 4.1.2] (a) => (b)
|
||||||
|
-- Δ^d f (n) = c for some nonzero integer c for n >> 0 → f is of polynomial type d
|
||||||
|
lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) → PolyType f d := by
|
||||||
|
intro h
|
||||||
|
rcases h with ⟨c, N, hh⟩
|
||||||
|
have H1 := λ n => (hh n).left
|
||||||
|
have H2 := λ n => (hh n).right
|
||||||
|
clear hh
|
||||||
|
have H2 : c ≠ 0 := by
|
||||||
|
tauto
|
||||||
|
induction' d with d hd
|
||||||
|
· rw [PolyType_0]
|
||||||
|
use c
|
||||||
|
use N
|
||||||
|
tauto
|
||||||
|
· sorry
|
||||||
|
|
||||||
|
-- [BH, 4.1.2] (a) <= (b)
|
||||||
|
-- f is of polynomial type d → Δ^d f (n) = c for some nonzero integer c for n >> 0
|
||||||
|
lemma b_to_a (f : ℤ → ℤ) (d : ℕ) : PolyType f d → (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) (n) = c) ∧ c ≠ 0)) := by
|
||||||
|
intro h
|
||||||
|
have : PolyType (Δ f d) 0 := by
|
||||||
|
apply Δ_PolyType_d_to_PolyType_0
|
||||||
|
exact h
|
||||||
|
have this1 : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n : ℤ), ((N ≤ n → (Δ f d) n = c) ∧ c ≠ 0)) := by
|
||||||
|
rw [←PolyType_0]
|
||||||
|
exact this
|
||||||
|
exact this1
|
||||||
|
end
|
||||||
|
|
||||||
|
-- @Additive lemma of length for a SES
|
||||||
|
section
|
||||||
|
-- variable {R M N : Type _} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N]
|
||||||
|
-- (f : M →[R] N)
|
||||||
|
open LinearMap
|
||||||
|
-- variable {R M : Type _} [CommRing R] [AddCommGroup M] [Module R M]
|
||||||
|
-- noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||||
|
|
||||||
|
|
||||||
|
-- Definitiion of the length of a module
|
||||||
|
noncomputable def length (R M : Type _) [CommRing R] [AddCommGroup M] [Module R M] := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||||
|
#check length ℤ ℤ
|
||||||
|
-- #eval length ℤ ℤ
|
||||||
|
|
||||||
|
|
||||||
|
-- @[ext]
|
||||||
|
-- structure SES (R : Type _) [CommRing R] where
|
||||||
|
-- A : Type _
|
||||||
|
-- B : Type _
|
||||||
|
-- C : Type _
|
||||||
|
-- f : A →ₗ[R] B
|
||||||
|
-- g : B →ₗ[R] C
|
||||||
|
-- left_exact : LinearMap.ker f = 0
|
||||||
|
-- middle_exact : LinearMap.range f = LinearMap.ker g
|
||||||
|
-- right_exact : LinearMap.range g = C
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
-- Definition of a SES (Short Exact Sequence)
|
||||||
|
-- @[ext]
|
||||||
|
structure SES {R A B C : Type _} [CommRing R] [AddCommGroup A] [AddCommGroup B]
|
||||||
|
[AddCommGroup C] [Module R A] [Module R B] [Module R C]
|
||||||
|
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
|
||||||
|
where
|
||||||
|
left_exact : LinearMap.ker f = ⊥
|
||||||
|
middle_exact : LinearMap.range f = LinearMap.ker g
|
||||||
|
right_exact : LinearMap.range g = ⊤
|
||||||
|
|
||||||
|
#check SES.right_exact
|
||||||
|
#check SES
|
||||||
|
|
||||||
|
|
||||||
|
-- Additive lemma
|
||||||
|
lemma length_Additive (R A B C : Type _) [CommRing R] [AddCommGroup A] [AddCommGroup B] [AddCommGroup C] [Module R A] [Module R B] [Module R C]
|
||||||
|
(f : A →ₗ[R] B) (g : B →ₗ[R] C)
|
||||||
|
: (SES f g) → ((length R A) + (length R C) = (length R B)) := by
|
||||||
|
intro h
|
||||||
|
rcases h with ⟨left_exact, middle_exact, right_exact⟩
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
end section
|
||||||
theorem hilbert_polynomial_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜]
|
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0) (hilb : ℤ → ℤ)
|
|
||||||
: true := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
lemma ass_graded (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
|
||||||
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) : (HomogeneousMax 𝒜 p) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
lemma Associated_prime_of_graded_is_graded
|
|
||||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
|
||||||
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
|
||||||
: (Ideal.IsHomogeneous' 𝒜 p) ∧ ((∃ (i : ℤ ), ∃ (x : 𝒜 i), p = (Submodule.span (⨁ i, 𝒜 i) {DirectSum.of x i}).annihilator)) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
def standard_graded (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (I : Ideal (⨁ i, 𝒜 i)) := (⨁ i, 𝒜 i)
|
|
||||||
|
|
Loading…
Reference in a new issue