From 4299cafebcb7fa20921bf982a30e981ccef1471d Mon Sep 17 00:00:00 2001 From: chelseaandmadrid <53058005+chelseaandmadrid@users.noreply.github.com> Date: Wed, 14 Jun 2023 00:23:01 -0700 Subject: [PATCH] clean some notations --- HilbertFunction.lean | 143 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 143 insertions(+) create mode 100644 HilbertFunction.lean diff --git a/HilbertFunction.lean b/HilbertFunction.lean new file mode 100644 index 0000000..a940547 --- /dev/null +++ b/HilbertFunction.lean @@ -0,0 +1,143 @@ +import Mathlib.Order.KrullDimension +import Mathlib.Order.JordanHolder +import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic +import Mathlib.Order.Height +import Mathlib.RingTheory.Ideal.Basic +import Mathlib.RingTheory.Ideal.Operations +import Mathlib.LinearAlgebra.Finsupp +import Mathlib.RingTheory.GradedAlgebra.Basic +import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal +import Mathlib.Algebra.Module.GradedModule +import Mathlib.RingTheory.Ideal.AssociatedPrime +import Mathlib.RingTheory.Noetherian +import Mathlib.RingTheory.Artinian +import Mathlib.Algebra.Module.GradedModule +import Mathlib.RingTheory.Noetherian +import Mathlib.RingTheory.Finiteness +import Mathlib.RingTheory.Ideal.Operations +import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic +import Mathlib.RingTheory.FiniteType +import Mathlib.Order.Height +import Mathlib.RingTheory.PrincipalIdealDomain +import Mathlib.RingTheory.DedekindDomain.Basic +import Mathlib.RingTheory.Ideal.Quotient +import Mathlib.RingTheory.Localization.AtPrime +import Mathlib.Order.ConditionallyCompleteLattice.Basic +import Mathlib.Algebra.DirectSum.Ring +import Mathlib.RingTheory.Ideal.LocalRing + +-- Setting for "library_search" +set_option maxHeartbeats 0 +macro "ls" : tactic => `(tactic|library_search) + +-- New tactic "obviously" +macro "obviously" : tactic => + `(tactic| ( + first + | dsimp; simp; done; dbg_trace "it was dsimp simp" + | simp; done; dbg_trace "it was simp" + | tauto; done; dbg_trace "it was tauto" + | simp; tauto; done; dbg_trace "it was simp tauto" + | rfl; done; dbg_trace "it was rfl" + | norm_num; done; dbg_trace "it was norm_num" + | /-change (@Eq ℝ _ _);-/ linarith; done; dbg_trace "it was linarith" + -- | gcongr; done + | ring; done; dbg_trace "it was ring" + | trivial; done; dbg_trace "it was trivial" + -- | nlinarith; done + | fail "No, this is not obvious.")) + + +-- @Definitions (to be classified) +section + +noncomputable def length ( A : Type _) (M : Type _) + [CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤} + +def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I) +def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I) + +--theorem monotone_stabilizes_iff_noetherian : +-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by +-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition] + +open GradedMonoid.GSmul +open DirectSum + +instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i) + where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i) + +lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) : + of _ _ (a • m) = of _ _ a • of _ _ m := by + refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm + refine' of_eq_of_gradedMonoid_eq _ + exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _ + +instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by + letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom + exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i) + +instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜] + [h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by + letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜) + exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i) + +-- Definition of a Hilbert function of a graded module +noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] + [DirectSum.GCommRing 𝒜] + [DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i))) + +noncomputable def dimensionring { A: Type _} + [CommRing A] := krullDim (PrimeSpectrum A) + +noncomputable def dimensionmodule ( A : Type _) (M : Type _) + [CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) ) + +-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +-- [DirectSum.GCommRing 𝒜] +-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry + +def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly + +end + + +-- @[BH, 4.1.3] when d ≥ 1 +theorem hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) +(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) +(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d) (hilb : ℤ → ℤ) + (Hhilb: hilbert_function 𝒜 𝓜 hilb) +: PolyType hilb (d - 1) := by + sorry + + + +-- @[BH, 4.1.3] when d = 0 +theorem hilbert_polynomial (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] +[DirectSum.GCommRing 𝒜] +[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) +(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) +(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0) (hilb : ℤ → ℤ) + + + +-- @[BH, 1.5.6 (b)(ii)] +-- An associated prime of a graded R-Mod M is graded +lemma Associated_prime_of_graded_is_graded (𝒜 : ℤ → Type _) + (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] + [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) + : true := by + -- Ideal.IsHomogeneous 𝒜 p + sorry + +-- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M +lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] + [DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) + : true := by + sorry +