Merge branch 'main' into grant

This commit is contained in:
GTBarkley 2023-06-13 14:45:10 -07:00 committed by GitHub
commit 425b80d595
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 60 additions and 2 deletions

View file

@ -99,7 +99,65 @@ lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krull
lift (Ideal.krullDim R) to ℕ∞ using h with k
use k
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry
@[simp]
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
constructor
· intro primeP
obtain T := eq_bot_or_top P
have : ¬P = := IsPrime.ne_top primeP
tauto
· intro botP
rw [botP]
exact bot_prime
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
unfold height
simp
by_contra spec
change _ ≠ _ at spec
rw [← Set.nonempty_iff_ne_empty] at spec
obtain ⟨J, JlP : J < P⟩ := spec
have P0 : IsPrime P.asIdeal := P.IsPrime
have J0 : IsPrime J.asIdeal := J.IsPrime
rw [field_prime_bot] at P0 J0
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
have : J = P := PrimeSpectrum.ext J P this
have : J ≠ P := ne_of_lt JlP
contradiction
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
unfold krullDim
simp [field_prime_height_zero]
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
unfold krullDim at h
simp [height] at h
by_contra x
rw [Ring.not_isField_iff_exists_prime] at x
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
have h2 : P' ≠ ⊥ := by
by_contra a
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
contradiction
have PgtBot : P' > ⊥ := Ne.bot_lt h2
have pos_height : ¬ ↑(Set.chainHeight {J | J < P'}) ≤ 0 := by
have : ⊥ ∈ {J | J < P'} := PgtBot
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
rw [←Set.one_le_chainHeight_iff] at this
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
have nonpos_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
rw [iSup_le_iff] at this
exact Iff.mp WithBot.coe_le_zero (this P')
contradiction
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
constructor
· exact isField.dim_zero
· intro fieldD
let h : Field D := IsField.toField fieldD
exact dim_field_eq_zero
#check Ring.DimensionLEOne
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry

View file

@ -68,7 +68,7 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
rw [←Set.one_le_chainHeight_iff] at this
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
have zero_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
have nonpos_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
rw [iSup_le_iff] at this
exact Iff.mp WithBot.coe_le_zero (this P')