mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Merge branch 'main' into grant
This commit is contained in:
commit
425b80d595
2 changed files with 60 additions and 2 deletions
|
@ -98,8 +98,66 @@ lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krull
|
||||||
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||||||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||||
use k
|
use k
|
||||||
|
|
||||||
|
@[simp]
|
||||||
|
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||||
|
constructor
|
||||||
|
· intro primeP
|
||||||
|
obtain T := eq_bot_or_top P
|
||||||
|
have : ¬P = ⊤ := IsPrime.ne_top primeP
|
||||||
|
tauto
|
||||||
|
· intro botP
|
||||||
|
rw [botP]
|
||||||
|
exact bot_prime
|
||||||
|
|
||||||
lemma dim_eq_zero_iff_field [IsDomain R] : krullDim R = 0 ↔ IsField R := by sorry
|
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||||
|
unfold height
|
||||||
|
simp
|
||||||
|
by_contra spec
|
||||||
|
change _ ≠ _ at spec
|
||||||
|
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||||
|
obtain ⟨J, JlP : J < P⟩ := spec
|
||||||
|
have P0 : IsPrime P.asIdeal := P.IsPrime
|
||||||
|
have J0 : IsPrime J.asIdeal := J.IsPrime
|
||||||
|
rw [field_prime_bot] at P0 J0
|
||||||
|
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
||||||
|
have : J = P := PrimeSpectrum.ext J P this
|
||||||
|
have : J ≠ P := ne_of_lt JlP
|
||||||
|
contradiction
|
||||||
|
|
||||||
|
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||||
|
unfold krullDim
|
||||||
|
simp [field_prime_height_zero]
|
||||||
|
|
||||||
|
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||||
|
unfold krullDim at h
|
||||||
|
simp [height] at h
|
||||||
|
by_contra x
|
||||||
|
rw [Ring.not_isField_iff_exists_prime] at x
|
||||||
|
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||||
|
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
|
||||||
|
have h2 : P' ≠ ⊥ := by
|
||||||
|
by_contra a
|
||||||
|
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
|
||||||
|
contradiction
|
||||||
|
have PgtBot : P' > ⊥ := Ne.bot_lt h2
|
||||||
|
have pos_height : ¬ ↑(Set.chainHeight {J | J < P'}) ≤ 0 := by
|
||||||
|
have : ⊥ ∈ {J | J < P'} := PgtBot
|
||||||
|
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||||
|
rw [←Set.one_le_chainHeight_iff] at this
|
||||||
|
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||||
|
have nonpos_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
|
||||||
|
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
|
||||||
|
rw [iSup_le_iff] at this
|
||||||
|
exact Iff.mp WithBot.coe_le_zero (this P')
|
||||||
|
contradiction
|
||||||
|
|
||||||
|
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||||
|
constructor
|
||||||
|
· exact isField.dim_zero
|
||||||
|
· intro fieldD
|
||||||
|
let h : Field D := IsField.toField fieldD
|
||||||
|
exact dim_field_eq_zero
|
||||||
|
|
||||||
#check Ring.DimensionLEOne
|
#check Ring.DimensionLEOne
|
||||||
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
||||||
|
|
|
@ -68,7 +68,7 @@ lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0)
|
||||||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||||
rw [←Set.one_le_chainHeight_iff] at this
|
rw [←Set.one_le_chainHeight_iff] at this
|
||||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||||
have zero_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
|
have nonpos_height : (Set.chainHeight {J | J < P'}) ≤ 0 := by
|
||||||
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
|
have : (⨆ (I : PrimeSpectrum D), (Set.chainHeight {J | J < I} : WithBot ℕ∞)) ≤ 0 := h.le
|
||||||
rw [iSup_le_iff] at this
|
rw [iSup_le_iff] at this
|
||||||
exact Iff.mp WithBot.coe_le_zero (this P')
|
exact Iff.mp WithBot.coe_le_zero (this P')
|
||||||
|
|
Loading…
Reference in a new issue