mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-24 22:58:36 -06:00
Merge branch 'monalisa' of github.com:GTBarkley/comm_alg into monalisa
This commit is contained in:
commit
40fc5871a9
12 changed files with 1054 additions and 0 deletions
BIN
.DS_Store
vendored
Normal file
BIN
.DS_Store
vendored
Normal file
Binary file not shown.
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -1,2 +1,4 @@
|
|||
/build
|
||||
/lake-packages/*
|
||||
.DS_Store
|
||||
.cache/
|
3
.vscode/settings.json
vendored
Normal file
3
.vscode/settings.json
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"search.useIgnoreFiles": false
|
||||
}
|
228
CommAlg/grant.lean
Normal file
228
CommAlg/grant.lean
Normal file
|
@ -0,0 +1,228 @@
|
|||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.Order.JordanHolder
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.Height
|
||||
import CommAlg.krull
|
||||
|
||||
|
||||
#check (p q : PrimeSpectrum _) → (p ≤ q)
|
||||
#check Preorder (PrimeSpectrum _)
|
||||
|
||||
-- Dimension of a ring
|
||||
#check krullDim (PrimeSpectrum _)
|
||||
|
||||
-- Length of a module
|
||||
#check krullDim (Submodule _ _)
|
||||
|
||||
#check JordanHolderLattice
|
||||
|
||||
|
||||
section Chains
|
||||
|
||||
variable {α : Type _} [Preorder α] (s : Set α)
|
||||
|
||||
def finFun_to_list {n : ℕ} : (Fin n → α) → List α := by sorry
|
||||
|
||||
def series_to_chain : StrictSeries s → s.subchain
|
||||
| ⟨length, toFun, strictMono⟩ =>
|
||||
⟨ finFun_to_list (fun x => toFun x),
|
||||
sorry⟩
|
||||
|
||||
-- there should be a coercion from WithTop ℕ to WithBot (WithTop ℕ) but it doesn't seem to work
|
||||
-- it looks like this might be because someone changed the instance from CoeCT to Coe during the port
|
||||
-- actually it looks like we can coerce to WithBot (ℕ∞) fine
|
||||
lemma twoHeights : s ≠ ∅ → (some (Set.chainHeight s) : WithBot (WithTop ℕ)) = krullDim s := by
|
||||
intro hs
|
||||
unfold Set.chainHeight
|
||||
unfold krullDim
|
||||
have hKrullSome : ∃n, krullDim s = some n := by
|
||||
|
||||
sorry
|
||||
-- norm_cast
|
||||
sorry
|
||||
|
||||
end Chains
|
||||
|
||||
section Krull
|
||||
|
||||
variable (R : Type _) [CommRing R] (M : Type _) [AddCommGroup M] [Module R M]
|
||||
|
||||
open Ideal
|
||||
|
||||
-- chain of primes
|
||||
#check height
|
||||
|
||||
lemma lt_height_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := sorry
|
||||
|
||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
rcases n with _ | n
|
||||
. constructor <;> intro h <;> exfalso
|
||||
. exact (not_le.mpr h) le_top
|
||||
. -- change ∃c, _ ∧ _ ∧ ((List.length c : ℕ∞) = ⊤ + 1) at h
|
||||
-- rw [WithTop.top_add] at h
|
||||
tauto
|
||||
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
|
||||
symm
|
||||
show (n + 1 ≤ m ↔ _ )
|
||||
apply ENat.add_one_le_iff
|
||||
exact ENat.coe_ne_top _
|
||||
rw [this]
|
||||
unfold Ideal.height
|
||||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||
-- have h := fun (c : List (PrimeSpectrum R)) => (@WithTop.coe_eq_coe _ (List.length c) n)
|
||||
constructor <;> rintro ⟨c, hc⟩ <;> use c --<;> tauto--<;> exact ⟨hc.1, by tauto⟩
|
||||
. --rw [and_assoc]
|
||||
-- show _ ∧ _ ∧ _
|
||||
--exact ⟨hc.1, _⟩
|
||||
tauto
|
||||
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
||||
norm_cast at hc
|
||||
tauto
|
||||
|
||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
show (_ < _) ↔ _
|
||||
rw [WithBot.coe_lt_coe]
|
||||
exact lt_height_iff' _
|
||||
|
||||
lemma height_le_iff {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 ≤ n ↔ ∀ c : List (PrimeSpectrum R), c ∈ {I : PrimeSpectrum R | I < 𝔭}.subchain ∧ c.length = n + 1 := by
|
||||
sorry
|
||||
|
||||
lemma krullDim_nonneg_of_nontrivial [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||||
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||
use k
|
||||
|
||||
-- lemma krullDim_le_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||
-- Ideal.krullDim R ≤ n ↔ (∀ c : List (PrimeSpectrum R), c.Chain' (· < ·) → c.length ≤ n + 1) := by
|
||||
-- sorry
|
||||
|
||||
-- lemma krullDim_ge_iff' (R : Type _) [CommRing R] {n : WithBot ℕ∞} :
|
||||
-- Ideal.krullDim R ≥ n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ c.length = n + 1 := sorry
|
||||
|
||||
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||||
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||
|
||||
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||
constructor
|
||||
. contrapose
|
||||
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
||||
apply PrimeSpectrum.instNonemptyPrimeSpectrum
|
||||
. intro h
|
||||
by_contra hneg
|
||||
rw [not_isEmpty_iff] at hneg
|
||||
rcases hneg with ⟨a, ha⟩
|
||||
exact primeSpectrum_empty_of_subsingleton R ⟨a, ha⟩
|
||||
|
||||
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
|
||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||
unfold Ideal.krullDim
|
||||
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
||||
constructor <;> intro h
|
||||
. rw [←not_nonempty_iff]
|
||||
rintro ⟨a, ha⟩
|
||||
specialize h ⟨a, ha⟩
|
||||
tauto
|
||||
. rw [h.forall_iff]
|
||||
trivial
|
||||
|
||||
#check (sorry : False)
|
||||
#check (sorryAx)
|
||||
#check (4 : WithBot ℕ∞)
|
||||
#check List.sum
|
||||
#check (_ ∈ (_ : List _))
|
||||
variable (α : Type )
|
||||
#synth Membership α (List α)
|
||||
#check bot_lt_iff_ne_bot
|
||||
-- #check ((4 : ℕ∞) : WithBot (WithTop ℕ))
|
||||
-- #check ( (Set.chainHeight s) : WithBot (ℕ∞))
|
||||
|
||||
/-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib
|
||||
applies only to dimension zero rings and domains of dimension 1. -/
|
||||
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ (1 : ℕ) := by
|
||||
rw [krullDim_le_iff R 1]
|
||||
-- unfold Ring.DimensionLEOne
|
||||
intro H p
|
||||
-- have Hp := H p.asIdeal
|
||||
-- have Hp := fun h => (Hp h) p.IsPrime
|
||||
apply le_of_not_gt
|
||||
intro h
|
||||
rcases ((lt_height_iff'' R).mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
||||
norm_cast at hc3
|
||||
rw [List.chain'_iff_get] at hc1
|
||||
specialize hc1 0 (by rw [hc3]; simp)
|
||||
-- generalize hq0 : List.get _ _ = q0 at hc1
|
||||
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
||||
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
||||
-- have hq0 : q0 ∈ c := List.get_mem _ _ _
|
||||
-- have hq1 : q1 ∈ c := List.get_mem _ _ _
|
||||
specialize hc2 q1 (List.get_mem _ _ _)
|
||||
-- have aa := (bot_le : (⊥ : Ideal R) ≤ q0.asIdeal)
|
||||
change q0.asIdeal < q1.asIdeal at hc1
|
||||
have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1
|
||||
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
|
||||
-- change q1.asIdeal < p.asIdeal at hc2
|
||||
apply IsPrime.ne_top p.IsPrime
|
||||
apply (IsCoatom.lt_iff H.out).mp
|
||||
exact hc2
|
||||
--refine Iff.mp radical_eq_top (?_ (id (Eq.symm hc3)))
|
||||
end Krull
|
||||
|
||||
section iSupWithBot
|
||||
|
||||
variable {α : Type _} [CompleteSemilatticeSup α] {I : Type _} (f : I → α)
|
||||
|
||||
#synth SupSet (WithBot ℕ∞)
|
||||
|
||||
protected lemma WithBot.iSup_ge_coe_iff {a : α} :
|
||||
(a ≤ ⨆ i : I, (f i : WithBot α) ) ↔ ∃ i : I, f i ≥ a := by
|
||||
rw [WithBot.coe_le_iff]
|
||||
sorry
|
||||
|
||||
end iSupWithBot
|
||||
|
||||
section myGreatElab
|
||||
open Lean Meta Elab
|
||||
|
||||
syntax (name := lhsStx) "lhs% " term:max : term
|
||||
syntax (name := rhsStx) "rhs% " term:max : term
|
||||
|
||||
@[term_elab lhsStx, term_elab rhsStx]
|
||||
def elabLhsStx : Term.TermElab := fun stx expectedType? =>
|
||||
match stx with
|
||||
| `(lhs% $t) => do
|
||||
let (lhs, _, eq) ← mkExpected expectedType?
|
||||
discard <| Term.elabTermEnsuringType t eq
|
||||
return lhs
|
||||
| `(rhs% $t) => do
|
||||
let (_, rhs, eq) ← mkExpected expectedType?
|
||||
discard <| Term.elabTermEnsuringType t eq
|
||||
return rhs
|
||||
| _ => throwUnsupportedSyntax
|
||||
where
|
||||
mkExpected expectedType? := do
|
||||
let α ←
|
||||
if let some expectedType := expectedType? then
|
||||
pure expectedType
|
||||
else
|
||||
mkFreshTypeMVar
|
||||
let lhs ← mkFreshExprMVar α
|
||||
let rhs ← mkFreshExprMVar α
|
||||
let u ← getLevel α
|
||||
let eq := mkAppN (.const ``Eq [u]) #[α, lhs, rhs]
|
||||
return (lhs, rhs, eq)
|
||||
|
||||
#check lhs% (add_comm 1 2)
|
||||
#check rhs% (add_comm 1 2)
|
||||
#check lhs% (add_comm _ _ : _ = 1 + 2)
|
||||
|
||||
example (x y : α) (h : x = y) : lhs% h = rhs% h := h
|
||||
|
||||
def lhsOf {α : Sort _} {x y : α} (h : x = y) : α := x
|
||||
|
||||
#check lhsOf (add_comm 1 2)
|
186
CommAlg/jayden(krull-dim-zero).lean
Normal file
186
CommAlg/jayden(krull-dim-zero).lean
Normal file
|
@ -0,0 +1,186 @@
|
|||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.RingTheory.JacobsonIdeal
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Nilpotent
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Maximal
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Noetherian
|
||||
import Mathlib.Data.Finite.Defs
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
import Mathlib.Algebra.Ring.Pi
|
||||
import Mathlib.RingTheory.Finiteness
|
||||
|
||||
|
||||
namespace Ideal
|
||||
|
||||
variable (R : Type _) [CommRing R] (P : PrimeSpectrum R)
|
||||
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < P}
|
||||
|
||||
noncomputable def krullDim (R : Type) [CommRing R] :
|
||||
WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height R I
|
||||
|
||||
-- Stacks Lemma 10.26.1 (Should already exists)
|
||||
-- (1) The closure of a prime P is V(P)
|
||||
-- (2) the irreducible closed subsets are V(P) for P prime
|
||||
-- (3) the irreducible components are V(P) for P minimal prime
|
||||
|
||||
-- Stacks Definition 10.32.1: An ideal is locally nilpotent
|
||||
-- if every element is nilpotent
|
||||
class IsLocallyNilpotent (I : Ideal R) : Prop :=
|
||||
h : ∀ x ∈ I, IsNilpotent x
|
||||
#check Ideal.IsLocallyNilpotent
|
||||
end Ideal
|
||||
|
||||
|
||||
-- Repeats the definition of the length of a module by Monalisa
|
||||
variable (R : Type _) [CommRing R] (I J : Ideal R)
|
||||
variable (M : Type _) [AddCommMonoid M] [Module R M]
|
||||
|
||||
-- change the definition of length of a module
|
||||
namespace Module
|
||||
noncomputable def length := Set.chainHeight {M' : Submodule R M | M' < ⊤}
|
||||
end Module
|
||||
|
||||
-- Stacks Lemma 10.31.5: R is Noetherian iff Spec(R) is a Noetherian space
|
||||
example [IsNoetherianRing R] :
|
||||
TopologicalSpace.NoetherianSpace (PrimeSpectrum R) :=
|
||||
inferInstance
|
||||
|
||||
instance ring_Noetherian_of_spec_Noetherian
|
||||
[TopologicalSpace.NoetherianSpace (PrimeSpectrum R)] :
|
||||
IsNoetherianRing R where
|
||||
noetherian := by sorry
|
||||
|
||||
lemma ring_Noetherian_iff_spec_Noetherian : IsNoetherianRing R
|
||||
↔ TopologicalSpace.NoetherianSpace (PrimeSpectrum R) := by
|
||||
constructor
|
||||
intro RisNoetherian
|
||||
-- how do I apply an instance to prove one direction?
|
||||
|
||||
|
||||
-- Use TopologicalSpace.NoetherianSpace.exists_finset_irreducible :
|
||||
-- Every closed subset of a noetherian space is a finite union
|
||||
-- of irreducible closed subsets.
|
||||
|
||||
-- Stacks Lemma 10.32.5: R Noetherian. I,J ideals.
|
||||
-- If J ⊂ √I, then J ^ n ⊂ I for some n. In particular, locally nilpotent
|
||||
-- and nilpotent are the same for Noetherian rings
|
||||
lemma containment_radical_power_containment :
|
||||
IsNoetherianRing R ∧ J ≤ Ideal.radical I → ∃ n : ℕ, J ^ n ≤ I := by
|
||||
rintro ⟨RisNoetherian, containment⟩
|
||||
rw [isNoetherianRing_iff_ideal_fg] at RisNoetherian
|
||||
specialize RisNoetherian (Ideal.radical I)
|
||||
-- rcases RisNoetherian with ⟨S, Sgenerates⟩
|
||||
have containment2 : ∃ n : ℕ, (Ideal.radical I) ^ n ≤ I := by
|
||||
apply Ideal.exists_radical_pow_le_of_fg I RisNoetherian
|
||||
cases' containment2 with n containment2'
|
||||
have containment3 : J ^ n ≤ (Ideal.radical I) ^ n := by
|
||||
apply Ideal.pow_mono containment
|
||||
use n
|
||||
apply le_trans containment3 containment2'
|
||||
-- The above can be proven using the following quicker theorem that is in the wrong place.
|
||||
-- Ideal.exists_pow_le_of_le_radical_of_fG
|
||||
|
||||
|
||||
-- Stacks Lemma 10.52.6: I is a maximal ideal and IM = 0. Then length of M is
|
||||
-- the same as the dimension as a vector space over R/I,
|
||||
lemma length_eq_dim_if_maximal_annihilates {I : Ideal R} [Ideal.IsMaximal I]
|
||||
: I • (⊤ : Submodule R M) = 0
|
||||
→ Module.length R M = Module.rank R⧸I M⧸(I • (⊤ : Submodule R M)) := by sorry
|
||||
|
||||
-- Does lean know that M/IM is a R/I module?
|
||||
|
||||
-- Stacks Lemma 10.52.8: I is a finitely generated maximal ideal of R.
|
||||
-- M is a finite R-mod and I^nM=0. Then length of M is finite.
|
||||
lemma power_zero_finite_length : Ideal.FG I → Ideal.IsMaximal I → Module.Finite R M
|
||||
→ (∃ n : ℕ, (I ^ n) • (⊤ : Submodule R M) = 0)
|
||||
→ (∃ m : ℕ, Module.length R M ≤ m) := by
|
||||
intro IisFG IisMaximal MisFinite power
|
||||
rcases power with ⟨n, npower⟩
|
||||
-- how do I get a generating set?
|
||||
|
||||
|
||||
-- Stacks Lemma 10.53.3: R is Artinian iff R has finitely many maximal ideals
|
||||
lemma IsArtinian_iff_finite_max_ideal :
|
||||
IsArtinianRing R ↔ Finite (MaximalSpectrum R) := by sorry
|
||||
|
||||
-- Stacks Lemma 10.53.4: R Artinian => Jacobson ideal of R is nilpotent
|
||||
lemma Jacobson_of_Artinian_is_nilpotent :
|
||||
IsArtinianRing R → IsNilpotent (Ideal.jacobson (⊤ : Ideal R)) := by sorry
|
||||
|
||||
-- Stacks Lemma 10.53.5: If R has finitely many maximal ideals and
|
||||
-- locally nilpotent Jacobson radical, then R is the product of its localizations at
|
||||
-- its maximal ideals. Also, all primes are maximal
|
||||
|
||||
-- lemma product_of_localization_at_maximal_ideal : Finite (MaximalSpectrum R)
|
||||
-- ∧
|
||||
|
||||
def jaydensRing : Type _ := sorry
|
||||
-- ∀ I : MaximalSpectrum R, Localization.AtPrime R I
|
||||
|
||||
instance : CommRing jaydensRing := sorry -- this should come for free, don't even need to state it
|
||||
|
||||
def foo : jaydensRing ≃+* R where
|
||||
toFun := _
|
||||
invFun := _
|
||||
left_inv := _
|
||||
right_inv := _
|
||||
map_mul' := _
|
||||
map_add' := _
|
||||
-- Ideal.IsLocallyNilpotent (Ideal.jacobson (⊤ : Ideal R)) →
|
||||
-- Pi.commRing (MaximalSpectrum R) Localization.AtPrime R I
|
||||
-- := by sorry
|
||||
-- Haven't finished this.
|
||||
|
||||
-- Stacks Lemma 10.53.6: R is Artinian iff R has finite length as an R-mod
|
||||
lemma IsArtinian_iff_finite_length :
|
||||
IsArtinianRing R ↔ (∃ n : ℕ, Module.length R R ≤ n) := by sorry
|
||||
|
||||
-- Lemma: if R has finite length as R-mod, then R is Noetherian
|
||||
lemma finite_length_is_Noetherian :
|
||||
(∃ n : ℕ, Module.length R R ≤ n) → IsNoetherianRing R := by sorry
|
||||
|
||||
-- Lemma: if R is Artinian then all the prime ideals are maximal
|
||||
lemma primes_of_Artinian_are_maximal :
|
||||
IsArtinianRing R → Ideal.IsPrime I → Ideal.IsMaximal I := by sorry
|
||||
|
||||
-- Lemma: Krull dimension of a ring is the supremum of height of maximal ideals
|
||||
|
||||
|
||||
-- Stacks Lemma 10.60.5: R is Artinian iff R is Noetherian of dimension 0
|
||||
lemma dim_zero_Noetherian_iff_Artinian (R : Type _) [CommRing R] :
|
||||
IsNoetherianRing R ∧ Ideal.krullDim R = 0 ↔ IsArtinianRing R := by
|
||||
constructor
|
||||
sorry
|
||||
intro RisArtinian
|
||||
constructor
|
||||
apply finite_length_is_Noetherian
|
||||
rwa [IsArtinian_iff_finite_length] at RisArtinian
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
232
CommAlg/krull.lean
Normal file
232
CommAlg/krull.lean
Normal file
|
@ -0,0 +1,232 @@
|
|||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.RingTheory.FiniteType
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
|
||||
/- This file contains the definitions of height of an ideal, and the krull
|
||||
dimension of a commutative ring.
|
||||
There are also sorried statements of many of the theorems that would be
|
||||
really nice to prove.
|
||||
I'm imagining for this file to ultimately contain basic API for height and
|
||||
krull dimension, and the theorems will probably end up other files,
|
||||
depending on how long the proofs are, and what extra API needs to be
|
||||
developed.
|
||||
-/
|
||||
|
||||
namespace Ideal
|
||||
open LocalRing
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
|
||||
noncomputable def krullDim (R : Type _) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||
lemma krullDim_def (R : Type _) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||
lemma krullDim_def' (R : Type _) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||
|
||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||
|
||||
lemma height_le_of_le {I J : PrimeSpectrum R} (I_le_J : I ≤ J) : height I ≤ height J := by
|
||||
apply Set.chainHeight_mono
|
||||
intro J' hJ'
|
||||
show J' < J
|
||||
exact lt_of_lt_of_le hJ' I_le_J
|
||||
|
||||
lemma krullDim_le_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||
|
||||
lemma krullDim_le_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||
krullDim R ≤ n ↔ ∀ I : PrimeSpectrum R, (height I : WithBot ℕ∞) ≤ ↑n := iSup_le_iff (α := WithBot ℕ∞)
|
||||
|
||||
lemma le_krullDim_iff (R : Type _) [CommRing R] (n : ℕ) :
|
||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
||||
|
||||
lemma le_krullDim_iff' (R : Type _) [CommRing R] (n : ℕ∞) :
|
||||
n ≤ krullDim R ↔ ∃ I : PrimeSpectrum R, n ≤ (height I : WithBot ℕ∞) := by sorry
|
||||
|
||||
@[simp]
|
||||
lemma height_le_krullDim (I : PrimeSpectrum R) : height I ≤ krullDim R :=
|
||||
le_iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) I
|
||||
|
||||
lemma krullDim_eq_height [LocalRing R] : krullDim R = height (closedPoint R) := by
|
||||
apply le_antisymm
|
||||
. rw [krullDim_le_iff']
|
||||
intro I
|
||||
apply WithBot.coe_mono
|
||||
apply height_le_of_le
|
||||
apply le_maximalIdeal
|
||||
exact I.2.1
|
||||
. simp
|
||||
|
||||
#check height_le_krullDim
|
||||
--some propositions that would be nice to be able to eventually
|
||||
|
||||
lemma primeSpectrum_empty_of_subsingleton (x : PrimeSpectrum R) [Subsingleton R] : False :=
|
||||
x.1.ne_top_iff_one.1 x.2.1 <| Eq.substr (Subsingleton.elim 1 (0 : R)) x.1.zero_mem
|
||||
|
||||
lemma primeSpectrum_empty_iff : IsEmpty (PrimeSpectrum R) ↔ Subsingleton R := by
|
||||
constructor
|
||||
. contrapose
|
||||
rw [not_isEmpty_iff, ←not_nontrivial_iff_subsingleton, not_not]
|
||||
apply PrimeSpectrum.instNonemptyPrimeSpectrum
|
||||
. intro h
|
||||
by_contra hneg
|
||||
rw [not_isEmpty_iff] at hneg
|
||||
rcases hneg with ⟨a, ha⟩
|
||||
exact primeSpectrum_empty_of_subsingleton ⟨a, ha⟩
|
||||
|
||||
/-- A ring has Krull dimension -∞ if and only if it is the zero ring -/
|
||||
lemma dim_eq_bot_iff : krullDim R = ⊥ ↔ Subsingleton R := by
|
||||
unfold Ideal.krullDim
|
||||
rw [←primeSpectrum_empty_iff, iSup_eq_bot]
|
||||
constructor <;> intro h
|
||||
. rw [←not_nonempty_iff]
|
||||
rintro ⟨a, ha⟩
|
||||
specialize h ⟨a, ha⟩
|
||||
tauto
|
||||
. rw [h.forall_iff]
|
||||
trivial
|
||||
|
||||
lemma krullDim_nonneg_of_nontrivial (R : Type _) [CommRing R] [Nontrivial R] : ∃ n : ℕ∞, Ideal.krullDim R = n := by
|
||||
have h := dim_eq_bot_iff.not.mpr (not_subsingleton R)
|
||||
lift (Ideal.krullDim R) to ℕ∞ using h with k
|
||||
use k
|
||||
|
||||
lemma dim_eq_zero_iff [Nontrivial R] : krullDim R = 0 ↔ ∀ I : PrimeSpectrum R, IsMaximal I.asIdeal := by
|
||||
constructor <;> intro h
|
||||
. intro I
|
||||
sorry
|
||||
. sorry
|
||||
|
||||
@[simp]
|
||||
lemma field_prime_bot {K: Type _} [Field K] (P : Ideal K) : IsPrime P ↔ P = ⊥ := by
|
||||
constructor
|
||||
· intro primeP
|
||||
obtain T := eq_bot_or_top P
|
||||
have : ¬P = ⊤ := IsPrime.ne_top primeP
|
||||
tauto
|
||||
· intro botP
|
||||
rw [botP]
|
||||
exact bot_prime
|
||||
|
||||
lemma field_prime_height_zero {K: Type _} [Field K] (P : PrimeSpectrum K) : height P = 0 := by
|
||||
unfold height
|
||||
simp
|
||||
by_contra spec
|
||||
change _ ≠ _ at spec
|
||||
rw [← Set.nonempty_iff_ne_empty] at spec
|
||||
obtain ⟨J, JlP : J < P⟩ := spec
|
||||
have P0 : IsPrime P.asIdeal := P.IsPrime
|
||||
have J0 : IsPrime J.asIdeal := J.IsPrime
|
||||
rw [field_prime_bot] at P0 J0
|
||||
have : J.asIdeal = P.asIdeal := Eq.trans J0 (Eq.symm P0)
|
||||
have : J = P := PrimeSpectrum.ext J P this
|
||||
have : J ≠ P := ne_of_lt JlP
|
||||
contradiction
|
||||
|
||||
lemma dim_field_eq_zero {K : Type _} [Field K] : krullDim K = 0 := by
|
||||
unfold krullDim
|
||||
simp [field_prime_height_zero]
|
||||
|
||||
lemma isField.dim_zero {D: Type _} [CommRing D] [IsDomain D] (h: krullDim D = 0) : IsField D := by
|
||||
by_contra x
|
||||
rw [Ring.not_isField_iff_exists_prime] at x
|
||||
obtain ⟨P, ⟨h1, primeP⟩⟩ := x
|
||||
let P' : PrimeSpectrum D := PrimeSpectrum.mk P primeP
|
||||
have h2 : P' ≠ ⊥ := by
|
||||
by_contra a
|
||||
have : P = ⊥ := by rwa [PrimeSpectrum.ext_iff] at a
|
||||
contradiction
|
||||
have pos_height : ¬ (height P') ≤ 0 := by
|
||||
have : ⊥ ∈ {J | J < P'} := Ne.bot_lt h2
|
||||
have : {J | J < P'}.Nonempty := Set.nonempty_of_mem this
|
||||
unfold height
|
||||
rw [←Set.one_le_chainHeight_iff] at this
|
||||
exact not_le_of_gt (Iff.mp ENat.one_le_iff_pos this)
|
||||
have nonpos_height : height P' ≤ 0 := by
|
||||
have := height_le_krullDim P'
|
||||
rw [h] at this
|
||||
aesop
|
||||
contradiction
|
||||
|
||||
lemma dim_eq_zero_iff_field {D: Type _} [CommRing D] [IsDomain D] : krullDim D = 0 ↔ IsField D := by
|
||||
constructor
|
||||
· exact isField.dim_zero
|
||||
· intro fieldD
|
||||
let h : Field D := IsField.toField fieldD
|
||||
exact dim_field_eq_zero
|
||||
|
||||
#check Ring.DimensionLEOne
|
||||
-- This lemma is false!
|
||||
lemma dim_le_one_iff : krullDim R ≤ 1 ↔ Ring.DimensionLEOne R := sorry
|
||||
|
||||
lemma lt_height_iff' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > n ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
rcases n with _ | n
|
||||
. constructor <;> intro h <;> exfalso
|
||||
. exact (not_le.mpr h) le_top
|
||||
. tauto
|
||||
have (m : ℕ∞) : m > some n ↔ m ≥ some (n + 1) := by
|
||||
symm
|
||||
show (n + 1 ≤ m ↔ _ )
|
||||
apply ENat.add_one_le_iff
|
||||
exact ENat.coe_ne_top _
|
||||
rw [this]
|
||||
unfold Ideal.height
|
||||
show ((↑(n + 1):ℕ∞) ≤ _) ↔ ∃c, _ ∧ _ ∧ ((_ : WithTop ℕ) = (_:ℕ∞))
|
||||
rw [{J | J < 𝔭}.le_chainHeight_iff]
|
||||
show (∃ c, (List.Chain' _ c ∧ ∀𝔮, 𝔮 ∈ c → 𝔮 < 𝔭) ∧ _) ↔ _
|
||||
constructor <;> rintro ⟨c, hc⟩ <;> use c
|
||||
. tauto
|
||||
. change _ ∧ _ ∧ (List.length c : ℕ∞) = n + 1 at hc
|
||||
norm_cast at hc
|
||||
tauto
|
||||
|
||||
lemma lt_height_iff'' {𝔭 : PrimeSpectrum R} {n : ℕ∞} :
|
||||
height 𝔭 > (n : WithBot ℕ∞) ↔ ∃ c : List (PrimeSpectrum R), c.Chain' (· < ·) ∧ (∀ 𝔮 ∈ c, 𝔮 < 𝔭) ∧ c.length = n + 1 := by
|
||||
show (_ < _) ↔ _
|
||||
rw [WithBot.coe_lt_coe]
|
||||
exact lt_height_iff'
|
||||
|
||||
/-- The converse of this is false, because the definition of "dimension ≤ 1" in mathlib
|
||||
applies only to dimension zero rings and domains of dimension 1. -/
|
||||
lemma dim_le_one_of_dimLEOne : Ring.DimensionLEOne R → krullDim R ≤ (1 : ℕ) := by
|
||||
rw [krullDim_le_iff R 1]
|
||||
intro H p
|
||||
apply le_of_not_gt
|
||||
intro h
|
||||
rcases (lt_height_iff''.mp h) with ⟨c, ⟨hc1, hc2, hc3⟩⟩
|
||||
norm_cast at hc3
|
||||
rw [List.chain'_iff_get] at hc1
|
||||
specialize hc1 0 (by rw [hc3]; simp)
|
||||
set q0 : PrimeSpectrum R := List.get c { val := 0, isLt := _ }
|
||||
set q1 : PrimeSpectrum R := List.get c { val := 1, isLt := _ }
|
||||
specialize hc2 q1 (List.get_mem _ _ _)
|
||||
change q0.asIdeal < q1.asIdeal at hc1
|
||||
have q1nbot := Trans.trans (bot_le : ⊥ ≤ q0.asIdeal) hc1
|
||||
specialize H q1.asIdeal (bot_lt_iff_ne_bot.mp q1nbot) q1.IsPrime
|
||||
apply IsPrime.ne_top p.IsPrime
|
||||
apply (IsCoatom.lt_iff H.out).mp
|
||||
exact hc2
|
||||
|
||||
lemma dim_le_one_of_pid [IsDomain R] [IsPrincipalIdealRing R] : krullDim R ≤ 1 := by
|
||||
rw [dim_le_one_iff]
|
||||
exact Ring.DimensionLEOne.principal_ideal_ring R
|
||||
|
||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry
|
||||
|
||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||
krullDim R + 1 = krullDim (Polynomial R) := sorry
|
||||
|
||||
lemma height_eq_dim_localization :
|
||||
height I = krullDim (Localization.AtPrime I.asIdeal) := sorry
|
||||
|
||||
lemma height_add_dim_quotient_le_dim : height I + krullDim (R ⧸ I.asIdeal) ≤ krullDim R := sorry
|
140
CommAlg/monalisa.lean
Normal file
140
CommAlg/monalisa.lean
Normal file
|
@ -0,0 +1,140 @@
|
|||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.Order.JordanHolder
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.LinearAlgebra.Finsupp
|
||||
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||
import Mathlib.Algebra.Module.GradedModule
|
||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.Algebra.Module.GradedModule
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.RingTheory.Finiteness
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.RingTheory.FiniteType
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
import Mathlib.Algebra.DirectSum.Ring
|
||||
import Mathlib.RingTheory.Ideal.LocalRing
|
||||
import Mathlib
|
||||
import Mathlib.Algebra.MonoidAlgebra.Basic
|
||||
import Mathlib.Data.Finset.Sort
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.Order.KrullDimension
|
||||
import Mathlib.Order.JordanHolder
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
import Mathlib.LinearAlgebra.Finsupp
|
||||
import Mathlib.RingTheory.GradedAlgebra.Basic
|
||||
import Mathlib.RingTheory.GradedAlgebra.HomogeneousIdeal
|
||||
import Mathlib.Algebra.Module.GradedModule
|
||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.Algebra.Module.GradedModule
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.RingTheory.Finiteness
|
||||
import Mathlib.RingTheory.Ideal.Operations
|
||||
|
||||
|
||||
|
||||
|
||||
noncomputable def length ( A : Type _) (M : Type _)
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||
|
||||
|
||||
def HomogeneousPrime { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsPrime I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
||||
|
||||
|
||||
def HomogeneousMax { A σ : Type _} [CommRing A] [SetLike σ A] [AddSubmonoidClass σ A] (𝒜 : ℤ → σ) [GradedRing 𝒜] (I : Ideal A):= (Ideal.IsMaximal I) ∧ (Ideal.IsHomogeneous 𝒜 I)
|
||||
|
||||
--theorem monotone_stabilizes_iff_noetherian :
|
||||
-- (∀ f : ℕ →o Submodule R M, ∃ n, ∀ m, n ≤ m → f n = f m) ↔ IsNoetherian R M := by
|
||||
-- rw [isNoetherian_iff_wellFounded, WellFounded.monotone_chain_condition]
|
||||
|
||||
open GradedMonoid.GSmul
|
||||
|
||||
open DirectSum
|
||||
|
||||
instance tada1 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMul (𝒜 0) (𝓜 i)
|
||||
where smul x y := @Eq.rec ℤ (0+i) (fun a _ => 𝓜 a) (GradedMonoid.GSmul.smul x y) i (zero_add i)
|
||||
|
||||
lemma mylem (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ) (a : 𝒜 0) (m : 𝓜 i) :
|
||||
of _ _ (a • m) = of _ _ a • of _ _ m := by
|
||||
refine' Eq.trans _ (Gmodule.of_smul_of 𝒜 𝓜 a m).symm
|
||||
refine' of_eq_of_gradedMonoid_eq _
|
||||
exact Sigma.ext (zero_add _).symm <| eq_rec_heq _ _
|
||||
|
||||
instance tada2 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ) : SMulWithZero (𝒜 0) (𝓜 i) := by
|
||||
letI := SMulWithZero.compHom (⨁ i, 𝓜 i) (of 𝒜 0).toZeroHom
|
||||
exact Function.Injective.smulWithZero (of 𝓜 i).toZeroHom Dfinsupp.single_injective (mylem 𝒜 𝓜 i)
|
||||
|
||||
instance tada3 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [DirectSum.GCommRing 𝒜]
|
||||
[h : DirectSum.Gmodule 𝒜 𝓜] (i : ℤ ): Module (𝒜 0) (𝓜 i) := by
|
||||
letI := Module.compHom (⨁ j, 𝓜 j) (ofZeroRingHom 𝒜)
|
||||
exact Dfinsupp.single_injective.module (𝒜 0) (of 𝓜 i) (mylem 𝒜 𝓜 i)
|
||||
|
||||
-- (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||
|
||||
noncomputable def dummyhil_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℕ∞) := ∀ i, hilb i = (length (𝒜 0) (𝓜 i))
|
||||
|
||||
|
||||
lemma hilbertz (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜]
|
||||
(finlen : ∀ i, (length (𝒜 0) (𝓜 i)) < ⊤ ) : ℤ → ℤ := by
|
||||
intro i
|
||||
let h := dummyhil_function 𝒜 𝓜
|
||||
simp at h
|
||||
let n : ℤ → ℕ := fun i ↦ WithTop.untop _ (finlen i).ne
|
||||
have hn : ∀ i, (n i : ℕ∞) = length (𝒜 0) (𝓜 i) := fun i ↦ WithTop.coe_untop _ _
|
||||
have' := hn i
|
||||
exact ((n i) : ℤ )
|
||||
|
||||
|
||||
noncomputable def hilbert_function (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (hilb : ℤ → ℤ) := ∀ i, hilb i = (ENat.toNat (length (𝒜 0) (𝓜 i)))
|
||||
|
||||
|
||||
|
||||
noncomputable def dimensionring { A: Type _}
|
||||
[CommRing A] := krullDim (PrimeSpectrum A)
|
||||
|
||||
|
||||
noncomputable def dimensionmodule ( A : Type _) (M : Type _)
|
||||
[CommRing A] [AddCommGroup M] [Module A M] := krullDim (PrimeSpectrum (A ⧸ ((⊤ : Submodule A M).annihilator)) )
|
||||
|
||||
-- lemma graded_local (𝒜 : ℤ → Type _) [SetLike (⨁ i, 𝒜 i)] (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
-- [DirectSum.GCommRing 𝒜]
|
||||
-- [DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) : ∃ ( I : Ideal ((⨁ i, 𝒜 i))),(HomogeneousMax 𝒜 I) := sorry
|
||||
|
||||
|
||||
def PolyType (f : ℤ → ℤ) (d : ℕ) := ∃ Poly : Polynomial ℚ, ∃ (N : ℤ), ∀ (n : ℤ), N ≤ n → f n = Polynomial.eval (n : ℚ) Poly ∧ d = Polynomial.degree Poly
|
||||
|
||||
|
||||
|
||||
theorem hilbert_polynomial (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||
[DirectSum.GCommRing 𝒜]
|
||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||
(findim : ∃ d : ℕ , dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = d):True := sorry
|
||||
|
||||
-- Semiring A]
|
||||
|
||||
-- variable [SetLike σ A]
|
89
CommAlg/resources.lean
Normal file
89
CommAlg/resources.lean
Normal file
|
@ -0,0 +1,89 @@
|
|||
/-
|
||||
We don't want to reinvent the wheel, but finding
|
||||
things in Mathlib can be pretty annoying. This is
|
||||
a temporary file intended to be a dumping ground for
|
||||
useful lemmas and definitions
|
||||
-/
|
||||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.RingTheory.FiniteType
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.MvPolynomial.Basic
|
||||
import Mathlib.RingTheory.Ideal.Over
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Algebra.Homology.ShortExact.Abelian
|
||||
|
||||
variable {R M : Type _} [CommRing R] [AddCommGroup M] [Module R M]
|
||||
|
||||
--ideals are defined
|
||||
#check Ideal R
|
||||
|
||||
variable (I : Ideal R)
|
||||
|
||||
--as are prime and maximal (they are defined as typeclasses)
|
||||
#check (I.IsPrime)
|
||||
#check (I.IsMaximal)
|
||||
|
||||
--a module being Noetherian is also a class
|
||||
#check IsNoetherian M
|
||||
#check IsNoetherian I
|
||||
|
||||
--a ring is Noetherian if it is Noetherian as a module over itself
|
||||
#check IsNoetherianRing R
|
||||
|
||||
--ditto for Artinian
|
||||
#check IsArtinian M
|
||||
#check IsArtinianRing R
|
||||
|
||||
--I can't find the theorem that an Artinian ring is noetherian. That could be a good
|
||||
--thing to add at some point
|
||||
|
||||
|
||||
|
||||
--Here's the main defintion that will be helpful
|
||||
#check Set.chainHeight
|
||||
|
||||
--this is the polynomial ring R[x]
|
||||
#check Polynomial R
|
||||
--this is the polynomial ring with variables indexed by ℕ
|
||||
#check MvPolynomial ℕ R
|
||||
--hopefully there's good communication between them
|
||||
|
||||
|
||||
--There's a preliminary version of the going up theorem
|
||||
#check Ideal.exists_ideal_over_prime_of_isIntegral
|
||||
|
||||
--Theorems relating primes of a ring to primes of its localization
|
||||
#check PrimeSpectrum.localization_comap_injective
|
||||
#check PrimeSpectrum.localization_comap_range
|
||||
--Theorems relating primes of a ring to primes of a quotient
|
||||
#check PrimeSpectrum.range_comap_of_surjective
|
||||
|
||||
--There's a lot of theorems about finite-type algebras
|
||||
#check Algebra.FiniteType.polynomial
|
||||
#check Algebra.FiniteType.mvPolynomial
|
||||
#check Algebra.FiniteType.of_surjective
|
||||
|
||||
-- There is a notion of short exact sequences but the number of theorems are lacking
|
||||
-- For example, I couldn't find anything saying that for a ses 0 -> A -> B -> C -> 0
|
||||
-- of R-modules, A and C being FG implies that B is FG
|
||||
open CategoryTheory CategoryTheory.Limits CategoryTheory.Preadditive
|
||||
|
||||
variable {𝒜 : Type _} [Category 𝒜] [Abelian 𝒜]
|
||||
variable {A B C : 𝒜} {f : A ⟶ B} {g : B ⟶ C} {h : LeftSplit f g} {h' : RightSplit f g}
|
||||
|
||||
#check ShortExact
|
||||
#check ShortExact f g
|
||||
-- There are some notion of splitting as well
|
||||
#check Splitting
|
||||
#check LeftSplit
|
||||
#check LeftSplit f g
|
||||
-- And there is a theorem that left split implies splitting
|
||||
#check LeftSplit.splitting
|
||||
#check LeftSplit.splitting h
|
||||
-- Similar things are there for RightSplit as well
|
||||
#check RightSplit.splitting
|
||||
#check RightSplit.splitting h'
|
||||
-- There's also a theorem about ismorphisms between short exact sequences
|
||||
#check isIso_of_shortExact_of_isIso_of_isIso
|
68
CommAlg/sameer(artinian-rings).lean
Normal file
68
CommAlg/sameer(artinian-rings).lean
Normal file
|
@ -0,0 +1,68 @@
|
|||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.RingTheory.Noetherian
|
||||
import Mathlib.RingTheory.Artinian
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.RingTheory.DedekindDomain.DVR
|
||||
|
||||
|
||||
lemma FieldisArtinian (R : Type _) [CommRing R] (IsField : ):= by sorry
|
||||
|
||||
|
||||
lemma ArtinianDomainIsField (R : Type _) [CommRing R] [IsDomain R]
|
||||
(IsArt : IsArtinianRing R) : IsField (R) := by
|
||||
-- Assume P is nonzero and R is Artinian
|
||||
-- Localize at P; Then R_P is Artinian;
|
||||
-- Assume R_P is not a field
|
||||
-- Then Jacobson Radical of R_P is nilpotent so it's maximal ideal is nilpotent
|
||||
-- Maximal ideal is zero since local ring is a domain
|
||||
-- a contradiction since P is nonzero
|
||||
-- Therefore, R is a field
|
||||
have maxIdeal := Ideal.exists_maximal R
|
||||
obtain ⟨m,hm⟩ := maxIdeal
|
||||
have h:= Ideal.primeCompl_le_nonZeroDivisors m
|
||||
have artRP : IsDomain _ := IsLocalization.isDomain_localization h
|
||||
have h' : IsArtinianRing (Localization (Ideal.primeCompl m)) := inferInstance
|
||||
have h' : IsNilpotent (Ideal.jacobson (⊥ : Ideal (Localization
|
||||
(Ideal.primeCompl m)))):= IsArtinianRing.isNilpotent_jacobson_bot
|
||||
have := LocalRing.jacobson_eq_maximalIdeal (⊥ : Ideal (Localization
|
||||
(Ideal.primeCompl m))) bot_ne_top
|
||||
rw [this] at h'
|
||||
have := IsNilpotent.eq_zero h'
|
||||
rw [Ideal.zero_eq_bot, ← LocalRing.isField_iff_maximalIdeal_eq] at this
|
||||
by_contra h''
|
||||
--by_cases h'' : m = ⊥
|
||||
have := Ring.ne_bot_of_isMaximal_of_not_isField hm h''
|
||||
have := IsLocalization.AtPrime.not_isField R this (Localization (Ideal.primeCompl m))
|
||||
contradiction
|
||||
|
||||
|
||||
#check Ideal.IsPrime
|
||||
#check IsDomain
|
||||
|
||||
lemma isArtinianRing_of_quotient_of_artinian (R : Type _) [CommRing R]
|
||||
(I : Ideal R) (IsArt : IsArtinianRing R) : IsArtinianRing (R ⧸ I) :=
|
||||
isArtinian_of_tower R (isArtinian_of_quotient_of_artinian R R I IsArt)
|
||||
|
||||
lemma IsPrimeMaximal (R : Type _) [CommRing R] (P : Ideal R)
|
||||
(IsArt : IsArtinianRing R) (isPrime : Ideal.IsPrime P) : Ideal.IsMaximal P :=
|
||||
by
|
||||
-- if R is Artinian and P is prime then R/P is Integral Domain
|
||||
-- which is Artinian Domain
|
||||
-- R⧸P is a field by the above lemma
|
||||
-- P is maximal
|
||||
|
||||
have : IsDomain (R⧸P) := Ideal.Quotient.isDomain P
|
||||
have artRP : IsArtinianRing (R⧸P) := by
|
||||
exact isArtinianRing_of_quotient_of_artinian R P IsArt
|
||||
|
||||
|
||||
-- Then R/I is Artinian
|
||||
-- have' : IsArtinianRing R ∧ Ideal.IsPrime I → IsDomain (R⧸I) := by
|
||||
|
||||
-- R⧸I.IsArtinian → monotone_stabilizes_iff_artinian.R⧸I
|
||||
|
||||
|
||||
|
||||
|
||||
-- Use Stacks project proof since it's broken into lemmas
|
52
CommAlg/sayantan(dim_eq_dim_polynomial_add_one).lean
Normal file
52
CommAlg/sayantan(dim_eq_dim_polynomial_add_one).lean
Normal file
|
@ -0,0 +1,52 @@
|
|||
import Mathlib.RingTheory.Ideal.Basic
|
||||
import Mathlib.Order.Height
|
||||
import Mathlib.RingTheory.PrincipalIdealDomain
|
||||
import Mathlib.RingTheory.DedekindDomain.Basic
|
||||
import Mathlib.RingTheory.Ideal.Quotient
|
||||
import Mathlib.RingTheory.Localization.AtPrime
|
||||
import Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic
|
||||
import Mathlib.Order.ConditionallyCompleteLattice.Basic
|
||||
|
||||
namespace Ideal
|
||||
|
||||
variable {R : Type _} [CommRing R] (I : PrimeSpectrum R)
|
||||
noncomputable def height : ℕ∞ := Set.chainHeight {J : PrimeSpectrum R | J < I}
|
||||
noncomputable def krullDim (R : Type) [CommRing R] : WithBot ℕ∞ := ⨆ (I : PrimeSpectrum R), height I
|
||||
|
||||
lemma height_def : height I = Set.chainHeight {J : PrimeSpectrum R | J < I} := rfl
|
||||
lemma krullDim_def (R : Type) [CommRing R] : krullDim R = (⨆ (I : PrimeSpectrum R), height I : WithBot ℕ∞) := rfl
|
||||
lemma krullDim_def' (R : Type) [CommRing R] : krullDim R = iSup (λ I : PrimeSpectrum R => (height I : WithBot ℕ∞)) := rfl
|
||||
|
||||
noncomputable instance : CompleteLattice (WithBot (ℕ∞)) := WithBot.WithTop.completeLattice
|
||||
|
||||
lemma dim_le_dim_polynomial_add_one [Nontrivial R] :
|
||||
krullDim R + 1 ≤ krullDim (Polynomial R) := sorry -- Others are working on it
|
||||
|
||||
-- private lemma sum_succ_of_succ_sum {ι : Type} (a : ℕ∞) [inst : Nonempty ι] :
|
||||
-- (⨆ (x : ι), a + 1) = (⨆ (x : ι), a) + 1 := by
|
||||
-- have : a + 1 = (⨆ (x : ι), a) + 1 := by rw [ciSup_const]
|
||||
-- have : a + 1 = (⨆ (x : ι), a + 1) := Eq.symm ciSup_const
|
||||
-- simp
|
||||
|
||||
lemma dim_eq_dim_polynomial_add_one [Nontrivial R] [IsNoetherianRing R] :
|
||||
krullDim R + 1 = krullDim (Polynomial R) := by
|
||||
rw [le_antisymm_iff]
|
||||
constructor
|
||||
· exact dim_le_dim_polynomial_add_one
|
||||
· unfold krullDim
|
||||
have htPBdd : ∀ (P : PrimeSpectrum (Polynomial R)), (height P : WithBot ℕ∞) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I + 1)) := by
|
||||
intro P
|
||||
have : ∃ (I : PrimeSpectrum R), (height P : WithBot ℕ∞) ≤ ↑(height I + 1) := by
|
||||
sorry
|
||||
obtain ⟨I, IP⟩ := this
|
||||
have : (↑(height I + 1) : WithBot ℕ∞) ≤ ⨆ (I : PrimeSpectrum R), ↑(height I + 1) := by
|
||||
apply @le_iSup (WithBot ℕ∞) _ _ _ I
|
||||
apply ge_trans this IP
|
||||
have oneOut : (⨆ (I : PrimeSpectrum R), (height I : WithBot ℕ∞) + 1) ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 := by
|
||||
have : ∀ P : PrimeSpectrum R, (height P : WithBot ℕ∞) + 1 ≤ (⨆ (I : PrimeSpectrum R), ↑(height I)) + 1 :=
|
||||
fun P ↦ (by apply add_le_add_right (@le_iSup (WithBot ℕ∞) _ _ _ P) 1)
|
||||
apply iSup_le
|
||||
apply this
|
||||
simp
|
||||
intro P
|
||||
exact ge_trans oneOut (htPBdd P)
|
54
README.md
Normal file
54
README.md
Normal file
|
@ -0,0 +1,54 @@
|
|||
# Commutative algebra in Lean
|
||||
|
||||
Welcome to the repository for adding definitions and theorems related to Krull dimension and Hilbert polynomials to mathlib.
|
||||
|
||||
We start the commutative algebra project with a list of important definitions and theorems and go from there.
|
||||
|
||||
Feel free to add, modify, and expand this file. Below are starting points for the project:
|
||||
|
||||
- Definitions of an ideal, prime ideal, and maximal ideal:
|
||||
```lean
|
||||
def Mathlib.RingTheory.Ideal.Basic.Ideal (R : Type u) [Semiring R] := Submodule R R
|
||||
class Mathlib.RingTheory.Ideal.Basic.IsPrime (I : Ideal α) : Prop
|
||||
class IsMaximal (I : Ideal α) : Prop
|
||||
```
|
||||
|
||||
- Definition of a Spec of a ring: `Mathlib.AlgebraicGeometry.PrimeSpectrum.Basic.PrimeSpectrum`
|
||||
|
||||
- Definition of a Noetherian and Artinian rings:
|
||||
```lean
|
||||
class Mathlib.RingTheory.Noetherian.IsNoetherian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop
|
||||
class Mathlib.RingTheory.Artinian.IsArtinian (R M) [Semiring R] [AddCommMonoid M] [Module R M] : Prop
|
||||
```
|
||||
- Definition of a polynomial ring: `Mathlib.RingTheory.Polynomial.Basic`
|
||||
|
||||
- Definitions of a local ring and quotient ring: `Mathlib.RingTheory.Ideal.Quotient.?`
|
||||
```lean
|
||||
class Mathlib.RingTheory.Ideal.LocalRing.LocalRing (R : Type u) [Semiring R] extends Nontrivial R : Prop
|
||||
```
|
||||
|
||||
- Definition of the chain of prime ideals and the length of these chains
|
||||
|
||||
- Definition of the Krull dimension (supremum of the lengh of chain of prime ideal): `Mathlib.Order.KrullDimension.krullDim`
|
||||
|
||||
- Krull dimension of a module
|
||||
|
||||
- Definition of the height of prime ideal (dimension of A_p): `Mathlib.Order.KrullDimension.height`
|
||||
|
||||
|
||||
Give Examples of each of the above cases for a particular instances of ring
|
||||
|
||||
Theorem 0: Hilbert Basis Theorem:
|
||||
```lean
|
||||
theorem Mathlib.RingTheory.Polynomial.Basic.Polynomial.isNoetherianRing [inst : IsNoetherianRing R] : IsNoetherianRing R[X]
|
||||
```
|
||||
|
||||
Theorem 1: If A is a nonzero ring, then dim A[t] >= dim A +1
|
||||
|
||||
Theorem 2: If A is a nonzero noetherian ring, then dim A[t] = dim A + 1
|
||||
|
||||
Theorem 3: If A is nonzero ring then dim A_p + dim A/p <= dim A
|
||||
|
||||
Lemma 0: A ring is artinian iff it is noetherian of dimension 0.
|
||||
|
||||
Definition of a graded module
|
Loading…
Reference in a new issue