mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
add statements
This commit is contained in:
parent
4299cafebc
commit
3e4a8a5fca
2 changed files with 15 additions and 10 deletions
|
@ -106,7 +106,7 @@ end
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 4.1.3] when d ≥ 1
|
-- @[BH, 4.1.3] when d ≥ 1
|
||||||
theorem hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
theorem hilbert_polynomial_ge1 (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
[DirectSum.GCommRing 𝒜]
|
[DirectSum.GCommRing 𝒜]
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
|
@ -118,26 +118,31 @@ theorem hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 4.1.3] when d = 0
|
-- @[BH, 4.1.3] when d = 0
|
||||||
theorem hilbert_polynomial (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
theorem hilbert_polynomial_0 (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
[DirectSum.GCommRing 𝒜]
|
[DirectSum.GCommRing 𝒜]
|
||||||
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0))
|
||||||
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0) (hilb : ℤ → ℤ)
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i) = 0) (hilb : ℤ → ℤ)
|
||||||
|
: true := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
-- @[BH, 1.5.6 (b)(ii)]
|
-- @[BH, 1.5.6 (b)(ii)]
|
||||||
-- An associated prime of a graded R-Mod M is graded
|
-- An associated prime of a graded R-Mod M is graded
|
||||||
lemma Associated_prime_of_graded_is_graded (𝒜 : ℤ → Type _)
|
lemma Associated_prime_of_graded_is_graded
|
||||||
(𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
||||||
|
(p : associatedPrimes (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
: true := by
|
: true := by
|
||||||
-- Ideal.IsHomogeneous 𝒜 p
|
|
||||||
sorry
|
sorry
|
||||||
|
-- Ideal.IsHomogeneous 𝒜 p
|
||||||
|
|
||||||
-- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M
|
-- @Existence of a chain of submodules of graded submoduels of f.g graded R-mod M
|
||||||
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
lemma Exist_chain_of_graded_submodules (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _)
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜] (fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜]
|
||||||
|
(fingen : IsNoetherian (⨁ i, 𝒜 i) (⨁ i, 𝓜 i))
|
||||||
: true := by
|
: true := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
|
@ -128,7 +128,7 @@ def f (n : ℤ) := n
|
||||||
end section
|
end section
|
||||||
|
|
||||||
|
|
||||||
-- Constant polynomial function = constant function
|
-- (NO need to prove) Constant polynomial function = constant function
|
||||||
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
lemma Poly_constant (F : Polynomial ℚ) (c : ℚ) :
|
||||||
(F = Polynomial.C c) ↔ (∀ r : ℚ, (Polynomial.eval r F) = c) := by
|
(F = Polynomial.C c) ↔ (∀ r : ℚ, (Polynomial.eval r F) = c) := by
|
||||||
constructor
|
constructor
|
||||||
|
|
Loading…
Reference in a new issue