mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
added graded morphism def
This commit is contained in:
parent
79a6844707
commit
37cc2c5a3c
1 changed files with 36 additions and 8 deletions
|
@ -4,6 +4,18 @@ import Mathlib.Algebra.Module.GradedModule
|
||||||
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
import Mathlib.RingTheory.Ideal.AssociatedPrime
|
||||||
import Mathlib.RingTheory.Artinian
|
import Mathlib.RingTheory.Artinian
|
||||||
import Mathlib.Order.Height
|
import Mathlib.Order.Height
|
||||||
|
import Mathlib.Algebra.Algebra.Subalgebra.Basic
|
||||||
|
import Mathlib.Algebra.Module.LinearMap
|
||||||
|
|
||||||
|
instance {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] :
|
||||||
|
Algebra (𝒜 0) (⨁ i, 𝒜 i) :=
|
||||||
|
Algebra.ofModule'
|
||||||
|
(by
|
||||||
|
intro r x
|
||||||
|
sorry)
|
||||||
|
(by
|
||||||
|
intro r x
|
||||||
|
sorry)
|
||||||
|
|
||||||
noncomputable def length ( A : Type _) (M : Type _)
|
noncomputable def length ( A : Type _) (M : Type _)
|
||||||
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
[CommRing A] [AddCommGroup M] [Module A M] := Set.chainHeight {M' : Submodule A M | M' < ⊤}
|
||||||
|
@ -96,13 +108,28 @@ lemma Associated_prime_of_graded_is_graded
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
-- def standard_graded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] (n : ℕ) :
|
class StandardGraded {𝒜 : ℤ → Type _} [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜] : Prop where
|
||||||
-- Prop :=
|
gen_in_first_piece :
|
||||||
|
Algebra.adjoin (𝒜 0) (DirectSum.of _ 1 : 𝒜 1 →+ ⨁ i, 𝒜 i).range = (⊤ : Subalgebra (𝒜 0) (⨁ i, 𝒜 i))
|
||||||
|
|
||||||
def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
def Component_of_graded_as_addsubgroup (𝒜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [DirectSum.GCommRing 𝒜]
|
||||||
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := sorry
|
(p : Ideal (⨁ i, 𝒜 i)) (hp : Ideal.IsHomogeneous' 𝒜 p) (i : ℤ) : AddSubgroup (𝒜 i) := sorry
|
||||||
|
|
||||||
|
|
||||||
|
def graded_morphism (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
||||||
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝] (f : (⨁ i, 𝓜 i) → (⨁ i, 𝓝 i)) : ∀ i, ∀ (r : 𝓜 i), ∀ j, (j ≠ i → f (DirectSum.of _ i r) j = 0) ∧ (IsLinearMap (⨁ i, 𝒜 i) f) := by sorry
|
||||||
|
|
||||||
|
|
||||||
|
def graded_submodule
|
||||||
|
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type u) (𝓝 : ℤ → Type u)
|
||||||
|
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
||||||
|
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
||||||
|
(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i)) (i : ℤ )
|
||||||
|
: ∃(piece : Submodule (𝒜 0) (𝓜 i)), piece = 𝓝 i := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- @ Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
-- @ Quotient of a graded ring R by a graded ideal p is a graded R-Mod, preserving each component
|
||||||
instance Quotient_of_graded_is_graded
|
instance Quotient_of_graded_is_graded
|
||||||
|
@ -111,12 +138,13 @@ instance Quotient_of_graded_is_graded
|
||||||
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
: DirectSum.Gmodule 𝒜 (fun i => (𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
instance graded_submodule
|
theorem quotient_hilbert_polynomial (d : ℕ) (d1 : 1 ≤ d) (𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) [∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)]
|
||||||
(𝒜 : ℤ → Type _) (𝓜 : ℤ → Type _) (𝓝 : ℤ → Type _)
|
[DirectSum.GCommRing 𝒜]
|
||||||
[∀ i, AddCommGroup (𝒜 i)] [∀ i, AddCommGroup (𝓜 i)] [∀ i, AddCommGroup (𝓝 i)]
|
[DirectSum.Gmodule 𝒜 𝓜] (art: IsArtinianRing (𝒜 0)) (loc : LocalRing (𝒜 0)) (p : Ideal (⨁ i, 𝒜 i))
|
||||||
[DirectSum.GCommRing 𝒜] [DirectSum.Gmodule 𝒜 𝓜][DirectSum.Gmodule 𝒜 𝓝]
|
(findim : dimensionmodule (⨁ i, 𝒜 i) (⨁ i, ((𝒜 i)⧸(Component_of_graded_as_addsubgroup 𝒜 p hp i)) = d) (hilb : ℤ → ℤ)
|
||||||
(opn : Submodule (⨁ i, 𝒜 i) (⨁ i, 𝓜 i)) (opnis : opn = (⨁ i, 𝓝 i))
|
(Hhilb: hilbert_function 𝒜 𝓜 hilb) (homprime: HomogeneousPrime 𝒜 p)
|
||||||
: (𝓝 i : Submodule (𝒜 0) (𝓜 i)) := by
|
: PolyType hilb (d - 1) := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue