mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 23:48:36 -06:00
add foo and foofoo
This commit is contained in:
parent
d5b2e4d431
commit
31210a9bf5
1 changed files with 38 additions and 41 deletions
|
@ -229,55 +229,49 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- Δ of 0 times preserve the function
|
-- Δ of 0 times preserves the function
|
||||||
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by
|
lemma Δ_0 (f : ℤ → ℤ) : (Δ f 0) = f := by tauto
|
||||||
tauto
|
|
||||||
|
-- Δ of 1 times decreaes the polynomial type by one
|
||||||
|
lemma Δ_1 (f : ℤ → ℤ) (d : ℕ): d > 0 → PolyType f d → PolyType (Δ f 1) (d - 1) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
lemma foo (f : ℤ → ℤ) (s : ℕ) : Δ (Δ f 1) s = (Δ f (s + 1)) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
-- Δ of d times maps polynomial of degree d to polynomial of degree 0
|
||||||
|
lemma foofoo (d : ℕ) : (f : ℤ → ℤ) → (PolyType f d) → (PolyType (Δ f d) 0):= by
|
||||||
|
induction' d with d hd
|
||||||
|
· intro f h
|
||||||
|
rw [Δ_0]
|
||||||
|
tauto
|
||||||
|
· intro f hf
|
||||||
|
have this1 : PolyType f (d + 1) := by tauto
|
||||||
|
have this2 : PolyType (Δ f (d + 1)) 0 := by
|
||||||
|
have this3 : PolyType (Δ f 1) d := by
|
||||||
|
sorry
|
||||||
|
clear hf
|
||||||
|
specialize hd (Δ f 1)
|
||||||
|
have this4 : PolyType (Δ (Δ f 1) d) 0 := by tauto
|
||||||
|
rw [foo] at this4
|
||||||
|
tauto
|
||||||
|
tauto
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := by
|
lemma Δ_d_PolyType_d_to_PolyType_0 (f : ℤ → ℤ) (d : ℕ): PolyType f d → PolyType (Δ f d) 0 := by
|
||||||
intro h
|
intro h
|
||||||
rcases h with ⟨Poly, hN⟩
|
have this : ∀ (d : ℕ), ∀ (f :ℤ → ℤ), (PolyType f d) → (PolyType (Δ f d) 0) := by
|
||||||
rcases hN with ⟨N, hh⟩
|
exact foofoo
|
||||||
rcases hh with ⟨H1, H2⟩
|
specialize this d f
|
||||||
have HH2 : d = Polynomial.degree Poly := by
|
|
||||||
tauto
|
tauto
|
||||||
have HH3 : Polynomial.degree Poly = d := by
|
|
||||||
tauto
|
|
||||||
induction' d with d hd
|
|
||||||
-- Base case
|
|
||||||
· rw [PolyType_0]
|
|
||||||
have this : Poly = Polynomial.C (Polynomial.coeff Poly 0) := by
|
|
||||||
exact Polynomial.eq_C_of_degree_eq_zero HH3
|
|
||||||
let d := Polynomial.coeff Poly 0
|
|
||||||
have this11 : ∃ (c : ℤ), c = d := by
|
|
||||||
sorry
|
|
||||||
rcases this11 with ⟨c, this1⟩
|
|
||||||
have this1 : c = Polynomial.coeff Poly 0 := by
|
|
||||||
tauto
|
|
||||||
use c; use N; intro n
|
|
||||||
constructor
|
|
||||||
· specialize H1 n
|
|
||||||
rw [Δ_0]
|
|
||||||
intro h
|
|
||||||
have this2 : f n = Polynomial.eval (n : ℚ) Poly := by
|
|
||||||
tauto
|
|
||||||
have this3 : f n = (c : ℚ) := by
|
|
||||||
rw [this2, this1]
|
|
||||||
let HHH := (Poly_constant Poly c).mp
|
|
||||||
sorry
|
|
||||||
exact Iff.mp (Rat.coe_int_inj (f n) c) this3
|
|
||||||
· intro c0
|
|
||||||
have this2 : (c : ℚ) = 0 := by
|
|
||||||
exact congrArg Int.cast c0
|
|
||||||
have this3 : Polynomial.coeff Poly 0 = 0 := by
|
|
||||||
rw [←this1, this2]
|
|
||||||
sorry
|
|
||||||
-- Induction step
|
|
||||||
· sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -293,10 +287,13 @@ lemma a_to_b (f : ℤ → ℤ) (d : ℕ) : (∃ (c : ℤ), ∃ (N : ℤ), ∀ (n
|
||||||
have H2 : c ≠ 0 := by
|
have H2 : c ≠ 0 := by
|
||||||
tauto
|
tauto
|
||||||
induction' d with d hd
|
induction' d with d hd
|
||||||
|
-- Base case
|
||||||
· rw [PolyType_0]
|
· rw [PolyType_0]
|
||||||
use c
|
use c
|
||||||
use N
|
use N
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
-- Induction step
|
||||||
· sorry
|
· sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue