mirror of
https://github.com/GTBarkley/comm_alg.git
synced 2024-12-26 07:38:36 -06:00
Finish the PolyType_0 lemma!
This commit is contained in:
parent
007e8cf795
commit
300007621a
1 changed files with 7 additions and 37 deletions
|
@ -198,6 +198,8 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
|||
have H22 := λ n=> (hh n).right
|
||||
have H2 : c ≠ 0 := by
|
||||
exact H22 0
|
||||
have H2 : (c : ℚ) ≠ 0 := by
|
||||
simp; tauto
|
||||
clear H22
|
||||
constructor
|
||||
· intro n Nn
|
||||
|
@ -211,42 +213,10 @@ lemma PolyType_0 (f : ℤ → ℤ) : (PolyType f 0) ↔ (∃ (c : ℤ), ∃ (N :
|
|||
exact this2.symm
|
||||
|
||||
|
||||
· sorry
|
||||
-- intro n
|
||||
-- specialize aaa n
|
||||
-- have this1 : c ≠ 0 → f n = c := by
|
||||
-- sorry
|
||||
-- rcases aaa with ⟨A, B⟩
|
||||
-- have this1 : f n = c := by
|
||||
-- tauto
|
||||
-- constructor
|
||||
-- clear A
|
||||
-- · have this2 : ∀ (t : ℚ), (Polynomial.eval t Poly) = (c : ℚ) := by
|
||||
-- rw [← Poly_constant Poly (c : ℚ)]
|
||||
-- sorry
|
||||
-- specialize this2 n
|
||||
-- rw [this2]
|
||||
-- tauto
|
||||
-- · sorry
|
||||
|
||||
|
||||
|
||||
-- constructor
|
||||
-- · intro n Nn
|
||||
-- specialize aaa n
|
||||
-- have this1 : c ≠ 0 → f n = c := by
|
||||
-- tauto
|
||||
-- rcases aaa with ⟨A, B⟩
|
||||
-- have this1 : f n = c := by
|
||||
-- tauto
|
||||
-- clear A
|
||||
-- have this2 : ∀ (t : ℚ), (Polynomial.eval t Poly) = (c : ℚ) := by
|
||||
-- rw [← Poly_constant Poly (c : ℚ)]
|
||||
-- sorry
|
||||
-- specialize this2 n
|
||||
-- rw [this2]
|
||||
-- tauto
|
||||
-- · sorry
|
||||
· have this : Polynomial.degree Poly = 0 := by
|
||||
simp only [map_intCast]
|
||||
exact Polynomial.degree_C H2
|
||||
tauto
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue